An attempt at getting image data back
This commit is contained in:
42
spider-cam/libcamera/utils/raspberrypi/ctt/alsc_only.py
Executable file
42
spider-cam/libcamera/utils/raspberrypi/ctt/alsc_only.py
Executable file
@@ -0,0 +1,42 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2022, Raspberry Pi Ltd
|
||||
#
|
||||
# alsc tuning tool
|
||||
|
||||
import sys
|
||||
|
||||
from ctt import *
|
||||
from ctt_tools import parse_input
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
initialise calibration
|
||||
"""
|
||||
if len(sys.argv) == 1:
|
||||
print("""
|
||||
PiSP Lens Shading Camera Tuning Tool version 1.0
|
||||
|
||||
Required Arguments:
|
||||
'-i' : Calibration image directory.
|
||||
'-o' : Name of output json file.
|
||||
|
||||
Optional Arguments:
|
||||
'-t' : Target platform - 'pisp' or 'vc4'. Default 'vc4'
|
||||
'-c' : Config file for the CTT. If not passed, default parameters used.
|
||||
'-l' : Name of output log file. If not passed, 'ctt_log.txt' used.
|
||||
""")
|
||||
quit(0)
|
||||
else:
|
||||
"""
|
||||
parse input arguments
|
||||
"""
|
||||
json_output, directory, config, log_output, target = parse_input()
|
||||
if target == 'pisp':
|
||||
from ctt_pisp import json_template, grid_size
|
||||
elif target == 'vc4':
|
||||
from ctt_vc4 import json_template, grid_size
|
||||
|
||||
run_ctt(json_output, directory, config, log_output, json_template, grid_size, target, alsc_only=True)
|
||||
142
spider-cam/libcamera/utils/raspberrypi/ctt/cac_only.py
Normal file
142
spider-cam/libcamera/utils/raspberrypi/ctt/cac_only.py
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2023, Raspberry Pi (Trading) Ltd.
|
||||
#
|
||||
# cac_only.py - cac tuning tool
|
||||
|
||||
|
||||
# This file allows you to tune only the chromatic aberration correction
|
||||
# Specify any number of files in the command line args, and it shall iterate through
|
||||
# and generate an averaged cac table from all the input images, which you can then
|
||||
# input into your tuning file.
|
||||
|
||||
# Takes .dng files produced by the camera modules of the dots grid and calculates the chromatic abberation of each dot.
|
||||
# Then takes each dot, and works out where it was in the image, and uses that to output a tables of the shifts
|
||||
# across the whole image.
|
||||
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import rawpy
|
||||
import sys
|
||||
import getopt
|
||||
|
||||
from ctt_cac import *
|
||||
|
||||
|
||||
def cac(filelist, output_filepath, plot_results=False):
|
||||
np.set_printoptions(precision=3)
|
||||
np.set_printoptions(suppress=True)
|
||||
|
||||
# Create arrays to hold all the dots data and their colour offsets
|
||||
red_shift = [] # Format is: [[Dot Center X, Dot Center Y, x shift, y shift]]
|
||||
blue_shift = []
|
||||
# Iterate through the files
|
||||
# Multiple files is reccomended to average out the lens aberration through rotations
|
||||
for file in filelist:
|
||||
print("\n Processing file " + str(file))
|
||||
# Read the raw RGB values from the .dng file
|
||||
with rawpy.imread(file) as raw:
|
||||
rgb = raw.postprocess()
|
||||
sizes = (raw.sizes)
|
||||
|
||||
image_size = [sizes[2], sizes[3]] # Image size, X, Y
|
||||
# Create a colour copy of the RGB values to use later in the calibration
|
||||
imout = Image.new(mode="RGB", size=image_size)
|
||||
rgb_image = np.array(imout)
|
||||
# The rgb values need reshaping from a 1d array to a 3d array to be worked with easily
|
||||
rgb.reshape((image_size[0], image_size[1], 3))
|
||||
rgb_image = rgb
|
||||
|
||||
# Pass the RGB image through to the dots locating program
|
||||
# Returns an array of the dots (colour rectangles around the dots), and an array of their locations
|
||||
print("Finding dots")
|
||||
dots, dots_locations = find_dots_locations(rgb_image)
|
||||
|
||||
# Now, analyse each dot. Work out the centroid of each colour channel, and use that to work out
|
||||
# by how far the chromatic aberration has shifted each channel
|
||||
print('Dots found: ' + str(len(dots)))
|
||||
|
||||
for dot, dot_location in zip(dots, dots_locations):
|
||||
if len(dot) > 0:
|
||||
if (dot_location[0] > 0) and (dot_location[1] > 0):
|
||||
ret = analyse_dot(dot, dot_location)
|
||||
red_shift.append(ret[0])
|
||||
blue_shift.append(ret[1])
|
||||
|
||||
# Take our arrays of red shifts and locations, push them through to be interpolated into a 9x9 matrix
|
||||
# for the CAC block to handle and then store these as a .json file to be added to the camera
|
||||
# tuning file
|
||||
print("\nCreating output grid")
|
||||
rx, ry, bx, by = shifts_to_yaml(red_shift, blue_shift, image_size)
|
||||
|
||||
print("CAC correction complete!")
|
||||
|
||||
# The json format that we then paste into the tuning file (manually)
|
||||
sample = '''
|
||||
{
|
||||
"rpi.cac" :
|
||||
{
|
||||
"strength": 1.0,
|
||||
"lut_rx" : [
|
||||
rx_vals
|
||||
],
|
||||
"lut_ry" : [
|
||||
ry_vals
|
||||
],
|
||||
"lut_bx" : [
|
||||
bx_vals
|
||||
],
|
||||
"lut_by" : [
|
||||
by_vals
|
||||
]
|
||||
}
|
||||
}
|
||||
'''
|
||||
|
||||
# Below, may look incorrect, however, the PiSP (standard) dimensions are flipped in comparison to
|
||||
# PIL image coordinate directions, hence why xr -> yr. Also, the shifts calculated are colour shifts,
|
||||
# and the PiSP block asks for the values it should shift (hence the * -1, to convert from colour shift to a pixel shift)
|
||||
sample = sample.replace("rx_vals", pprint_array(ry * -1))
|
||||
sample = sample.replace("ry_vals", pprint_array(rx * -1))
|
||||
sample = sample.replace("bx_vals", pprint_array(by * -1))
|
||||
sample = sample.replace("by_vals", pprint_array(bx * -1))
|
||||
print("Successfully converted to JSON")
|
||||
f = open(str(output_filepath), "w+")
|
||||
f.write(sample)
|
||||
f.close()
|
||||
print("Successfully written to json file")
|
||||
'''
|
||||
If you wish to see a plot of the colour channel shifts, add the -p or --plots option
|
||||
Can be a quick way of validating if the data/dots you've got are good, or if you need to
|
||||
change some parameters/take some better images
|
||||
'''
|
||||
if plot_results:
|
||||
plot_shifts(red_shift, blue_shift)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argv = sys.argv
|
||||
# Detect the input and output file paths
|
||||
arg_output = "output.json"
|
||||
arg_help = "{0} -i <input> -o <output> -p <plot results>".format(argv[0])
|
||||
opts, args = getopt.getopt(argv[1:], "hi:o:p", ["help", "input=", "output=", "plot"])
|
||||
|
||||
output_location = 0
|
||||
input_location = 0
|
||||
filelist = []
|
||||
plot_results = False
|
||||
for i in range(len(argv)):
|
||||
if ("-h") in argv[i]:
|
||||
print(arg_help) # print the help message
|
||||
sys.exit(2)
|
||||
if "-o" in argv[i]:
|
||||
output_location = i
|
||||
if ".dng" in argv[i]:
|
||||
filelist.append(argv[i])
|
||||
if "-p" in argv[i]:
|
||||
plot_results = True
|
||||
|
||||
arg_output = argv[output_location + 1]
|
||||
cac(filelist, arg_output, plot_results)
|
||||
30
spider-cam/libcamera/utils/raspberrypi/ctt/colors.py
Normal file
30
spider-cam/libcamera/utils/raspberrypi/ctt/colors.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Program to convert from RGB to LAB color space
|
||||
def RGB_to_LAB(RGB): # where RGB is a 1x3 array. e.g RGB = [100, 255, 230]
|
||||
num = 0
|
||||
XYZ = [0, 0, 0]
|
||||
# converted all the three R, G, B to X, Y, Z
|
||||
X = RGB[0] * 0.4124 + RGB[1] * 0.3576 + RGB[2] * 0.1805
|
||||
Y = RGB[0] * 0.2126 + RGB[1] * 0.7152 + RGB[2] * 0.0722
|
||||
Z = RGB[0] * 0.0193 + RGB[1] * 0.1192 + RGB[2] * 0.9505
|
||||
|
||||
XYZ[0] = X / 255 * 100
|
||||
XYZ[1] = Y / 255 * 100 # XYZ Must be in range 0 -> 100, so scale down from 255
|
||||
XYZ[2] = Z / 255 * 100
|
||||
XYZ[0] = XYZ[0] / 95.047 # ref_X = 95.047 Observer= 2°, Illuminant= D65
|
||||
XYZ[1] = XYZ[1] / 100.0 # ref_Y = 100.000
|
||||
XYZ[2] = XYZ[2] / 108.883 # ref_Z = 108.883
|
||||
num = 0
|
||||
for value in XYZ:
|
||||
if value > 0.008856:
|
||||
value = value ** (0.3333333333333333)
|
||||
else:
|
||||
value = (7.787 * value) + (16 / 116)
|
||||
XYZ[num] = value
|
||||
num = num + 1
|
||||
|
||||
# L, A, B, values calculated below
|
||||
L = (116 * XYZ[1]) - 16
|
||||
a = 500 * (XYZ[0] - XYZ[1])
|
||||
b = 200 * (XYZ[1] - XYZ[2])
|
||||
|
||||
return [L, a, b]
|
||||
120
spider-cam/libcamera/utils/raspberrypi/ctt/convert_tuning.py
Executable file
120
spider-cam/libcamera/utils/raspberrypi/ctt/convert_tuning.py
Executable file
@@ -0,0 +1,120 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Script to convert version 1.0 Raspberry Pi camera tuning files to version 2.0.
|
||||
#
|
||||
# Copyright 2022 Raspberry Pi Ltd
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
from ctt_pretty_print_json import pretty_print
|
||||
from ctt_pisp import grid_size as grid_size_pisp
|
||||
from ctt_pisp import json_template as json_template_pisp
|
||||
from ctt_vc4 import grid_size as grid_size_vc4
|
||||
from ctt_vc4 import json_template as json_template_vc4
|
||||
|
||||
|
||||
def interp_2d(in_ls, src_w, src_h, dst_w, dst_h):
|
||||
|
||||
out_ls = np.zeros((dst_h, dst_w))
|
||||
for i in range(src_h):
|
||||
out_ls[i] = np.interp(np.linspace(0, dst_w - 1, dst_w),
|
||||
np.linspace(0, dst_w - 1, src_w),
|
||||
in_ls[i])
|
||||
for i in range(dst_w):
|
||||
out_ls[:,i] = np.interp(np.linspace(0, dst_h - 1, dst_h),
|
||||
np.linspace(0, dst_h - 1, src_h),
|
||||
out_ls[:src_h, i])
|
||||
return out_ls
|
||||
|
||||
|
||||
def convert_target(in_json: dict, target: str):
|
||||
|
||||
src_w, src_h = grid_size_pisp if target == 'vc4' else grid_size_vc4
|
||||
dst_w, dst_h = grid_size_vc4 if target == 'vc4' else grid_size_pisp
|
||||
json_template = json_template_vc4 if target == 'vc4' else json_template_pisp
|
||||
|
||||
# ALSC grid sizes
|
||||
alsc = next(algo for algo in in_json['algorithms'] if 'rpi.alsc' in algo)['rpi.alsc']
|
||||
for colour in ['calibrations_Cr', 'calibrations_Cb']:
|
||||
if colour not in alsc:
|
||||
continue
|
||||
for temperature in alsc[colour]:
|
||||
in_ls = np.reshape(temperature['table'], (src_h, src_w))
|
||||
out_ls = interp_2d(in_ls, src_w, src_h, dst_w, dst_h)
|
||||
temperature['table'] = np.round(out_ls.flatten(), 3).tolist()
|
||||
|
||||
if 'luminance_lut' in alsc:
|
||||
in_ls = np.reshape(alsc['luminance_lut'], (src_h, src_w))
|
||||
out_ls = interp_2d(in_ls, src_w, src_h, dst_w, dst_h)
|
||||
alsc['luminance_lut'] = np.round(out_ls.flatten(), 3).tolist()
|
||||
|
||||
# Denoise blocks
|
||||
for i, algo in enumerate(in_json['algorithms']):
|
||||
if list(algo.keys())[0] == 'rpi.sdn':
|
||||
in_json['algorithms'][i] = {'rpi.denoise': json_template['rpi.sdn'] if target == 'vc4' else json_template['rpi.denoise']}
|
||||
break
|
||||
|
||||
# AGC mode weights
|
||||
agc = next(algo for algo in in_json['algorithms'] if 'rpi.agc' in algo)['rpi.agc']
|
||||
if 'channels' in agc:
|
||||
for i, channel in enumerate(agc['channels']):
|
||||
target_agc_metering = json_template['rpi.agc']['channels'][i]['metering_modes']
|
||||
for mode, v in channel['metering_modes'].items():
|
||||
v['weights'] = target_agc_metering[mode]['weights']
|
||||
else:
|
||||
for mode, v in agc["metering_modes"].items():
|
||||
target_agc_metering = json_template['rpi.agc']['channels'][0]['metering_modes']
|
||||
v['weights'] = target_agc_metering[mode]['weights']
|
||||
|
||||
# HDR
|
||||
if target == 'pisp':
|
||||
for i, algo in enumerate(in_json['algorithms']):
|
||||
if list(algo.keys())[0] == 'rpi.hdr':
|
||||
in_json['algorithms'][i] = {'rpi.hdr': json_template['rpi.hdr']}
|
||||
|
||||
return in_json
|
||||
|
||||
|
||||
def convert_v2(in_json: dict, target: str) -> str:
|
||||
|
||||
if 'version' in in_json.keys() and in_json['version'] == 1.0:
|
||||
converted = {
|
||||
'version': 2.0,
|
||||
'target': target,
|
||||
'algorithms': [{algo: config} for algo, config in in_json.items()]
|
||||
}
|
||||
else:
|
||||
converted = in_json
|
||||
|
||||
# Convert between vc4 <-> pisp targets. This is a best effort thing.
|
||||
if converted['target'] != target:
|
||||
converted = convert_target(converted, target)
|
||||
converted['target'] = target
|
||||
|
||||
grid_size = grid_size_vc4[0] if target == 'vc4' else grid_size_pisp[0]
|
||||
return pretty_print(converted, custom_elems={'table': grid_size, 'luminance_lut': grid_size})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=
|
||||
'Convert the format of the Raspberry Pi camera tuning file from v1.0 to v2.0 and/or the vc4 <-> pisp targets.\n')
|
||||
parser.add_argument('input', type=str, help='Input tuning file.')
|
||||
parser.add_argument('-t', '--target', type=str, help='Target platform.',
|
||||
choices=['pisp', 'vc4'], default='vc4')
|
||||
parser.add_argument('output', type=str, nargs='?',
|
||||
help='Output converted tuning file. If not provided, the input file will be updated in-place.',
|
||||
default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.input, 'r') as f:
|
||||
in_json = json.load(f)
|
||||
|
||||
out_json = convert_v2(in_json, args.target)
|
||||
|
||||
with open(args.output if args.output is not None else args.input, 'w') as f:
|
||||
f.write(out_json)
|
||||
802
spider-cam/libcamera/utils/raspberrypi/ctt/ctt.py
Executable file
802
spider-cam/libcamera/utils/raspberrypi/ctt/ctt.py
Executable file
@@ -0,0 +1,802 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool
|
||||
|
||||
import os
|
||||
import sys
|
||||
from ctt_image_load import *
|
||||
from ctt_cac import *
|
||||
from ctt_ccm import *
|
||||
from ctt_awb import *
|
||||
from ctt_alsc import *
|
||||
from ctt_lux import *
|
||||
from ctt_noise import *
|
||||
from ctt_geq import *
|
||||
from ctt_pretty_print_json import pretty_print
|
||||
import random
|
||||
import json
|
||||
import re
|
||||
|
||||
"""
|
||||
This file houses the camera object, which is used to perform the calibrations.
|
||||
The camera object houses all the calibration images as attributes in three lists:
|
||||
- imgs (macbeth charts)
|
||||
- imgs_alsc (alsc correction images)
|
||||
- imgs_cac (cac correction images)
|
||||
Various calibrations are methods of the camera object, and the output is stored
|
||||
in a dictionary called self.json.
|
||||
Once all the caibration has been completed, the Camera.json is written into a
|
||||
json file.
|
||||
The camera object initialises its json dictionary by reading from a pre-written
|
||||
blank json file. This has been done to avoid reproducing the entire json file
|
||||
in the code here, thereby avoiding unecessary clutter.
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Get the colour and lux values from the strings of each inidvidual image
|
||||
"""
|
||||
def get_col_lux(string):
|
||||
"""
|
||||
Extract colour and lux values from filename
|
||||
"""
|
||||
col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
|
||||
lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
|
||||
try:
|
||||
col = col.group(1)
|
||||
except AttributeError:
|
||||
"""
|
||||
Catch error if images labelled incorrectly and pass reasonable defaults
|
||||
"""
|
||||
return None, None
|
||||
try:
|
||||
lux = lux.group(1)
|
||||
except AttributeError:
|
||||
"""
|
||||
Catch error if images labelled incorrectly and pass reasonable defaults
|
||||
Still returns colour if that has been found.
|
||||
"""
|
||||
return col, None
|
||||
return int(col), int(lux)
|
||||
|
||||
|
||||
"""
|
||||
Camera object that is the backbone of the tuning tool.
|
||||
Input is the desired path of the output json.
|
||||
"""
|
||||
class Camera:
|
||||
def __init__(self, jfile, json):
|
||||
self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
|
||||
if self.path == '/':
|
||||
self.path = ''
|
||||
self.imgs = []
|
||||
self.imgs_alsc = []
|
||||
self.imgs_cac = []
|
||||
self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
|
||||
self.log_separator = '\n'+'-'*70+'\n'
|
||||
self.jf = jfile
|
||||
"""
|
||||
initial json dict populated by uncalibrated values
|
||||
"""
|
||||
self.json = json
|
||||
|
||||
"""
|
||||
Perform colour correction calibrations by comparing macbeth patch colours
|
||||
to standard macbeth chart colours.
|
||||
"""
|
||||
def ccm_cal(self, do_alsc_colour, grid_size):
|
||||
if 'rpi.ccm' in self.disable:
|
||||
return 1
|
||||
print('\nStarting CCM calibration')
|
||||
self.log_new_sec('CCM')
|
||||
"""
|
||||
if image is greyscale then CCm makes no sense
|
||||
"""
|
||||
if self.grey:
|
||||
print('\nERROR: Can\'t do CCM on greyscale image!')
|
||||
self.log += '\nERROR: Cannot perform CCM calibration '
|
||||
self.log += 'on greyscale image!\nCCM aborted!'
|
||||
del self.json['rpi.ccm']
|
||||
return 0
|
||||
a = time.time()
|
||||
"""
|
||||
Check if alsc tables have been generated, if not then do ccm without
|
||||
alsc
|
||||
"""
|
||||
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
|
||||
"""
|
||||
case where ALSC colour has been done, so no errors should be
|
||||
expected...
|
||||
"""
|
||||
try:
|
||||
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
||||
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||
self.log += '\nALSC tables found successfully'
|
||||
except KeyError:
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
print('WARNING! No ALSC tables found for CCM!')
|
||||
print('Performing CCM calibrations without ALSC correction...')
|
||||
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
else:
|
||||
"""
|
||||
case where config options result in CCM done without ALSC colour tables
|
||||
"""
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
|
||||
"""
|
||||
Do CCM calibration
|
||||
"""
|
||||
try:
|
||||
ccms = ccm(self, cal_cr_list, cal_cb_list, grid_size)
|
||||
except ArithmeticError:
|
||||
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
|
||||
self.log += '\nERROR: Singular matrix encountered during fit!'
|
||||
self.log += '\nCCM aborted!'
|
||||
return 1
|
||||
"""
|
||||
Write output to json
|
||||
"""
|
||||
self.json['rpi.ccm']['ccms'] = ccms
|
||||
self.log += '\nCCM calibration written to json file'
|
||||
print('Finished CCM calibration')
|
||||
|
||||
"""
|
||||
Perform chromatic abberation correction using multiple dots images.
|
||||
"""
|
||||
def cac_cal(self, do_alsc_colour):
|
||||
if 'rpi.cac' in self.disable:
|
||||
return 1
|
||||
print('\nStarting CAC calibration')
|
||||
self.log_new_sec('CAC')
|
||||
"""
|
||||
check if cac images have been taken
|
||||
"""
|
||||
if len(self.imgs_cac) == 0:
|
||||
print('\nError:\nNo cac calibration images found')
|
||||
self.log += '\nERROR: No CAC calibration images found!'
|
||||
self.log += '\nCAC calibration aborted!'
|
||||
return 1
|
||||
"""
|
||||
if image is greyscale then CAC makes no sense
|
||||
"""
|
||||
if self.grey:
|
||||
print('\nERROR: Can\'t do CAC on greyscale image!')
|
||||
self.log += '\nERROR: Cannot perform CAC calibration '
|
||||
self.log += 'on greyscale image!\nCAC aborted!'
|
||||
del self.json['rpi.cac']
|
||||
return 0
|
||||
a = time.time()
|
||||
"""
|
||||
Check if camera is greyscale or color. If not greyscale, then perform cac
|
||||
"""
|
||||
if do_alsc_colour:
|
||||
"""
|
||||
Here we have a color sensor. Perform cac
|
||||
"""
|
||||
try:
|
||||
cacs = cac(self)
|
||||
except ArithmeticError:
|
||||
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
|
||||
self.log += '\nERROR: Singular matrix encountered during fit!'
|
||||
self.log += '\nCAC aborted!'
|
||||
return 1
|
||||
else:
|
||||
"""
|
||||
case where config options suggest greyscale camera. No point in doing CAC
|
||||
"""
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
self.log += '\nWARNING: No ALSC tables found.\nCAC calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
|
||||
"""
|
||||
Write output to json
|
||||
"""
|
||||
self.json['rpi.cac']['cac'] = cacs
|
||||
self.log += '\nCAC calibration written to json file'
|
||||
print('Finished CAC calibration')
|
||||
|
||||
|
||||
"""
|
||||
Auto white balance calibration produces a colour curve for
|
||||
various colour temperatures, as well as providing a maximum 'wiggle room'
|
||||
distance from this curve (transverse_neg/pos).
|
||||
"""
|
||||
def awb_cal(self, greyworld, do_alsc_colour, grid_size):
|
||||
if 'rpi.awb' in self.disable:
|
||||
return 1
|
||||
print('\nStarting AWB calibration')
|
||||
self.log_new_sec('AWB')
|
||||
"""
|
||||
if image is greyscale then AWB makes no sense
|
||||
"""
|
||||
if self.grey:
|
||||
print('\nERROR: Can\'t do AWB on greyscale image!')
|
||||
self.log += '\nERROR: Cannot perform AWB calibration '
|
||||
self.log += 'on greyscale image!\nAWB aborted!'
|
||||
del self.json['rpi.awb']
|
||||
return 0
|
||||
"""
|
||||
optional set greyworld (e.g. for noir cameras)
|
||||
"""
|
||||
if greyworld:
|
||||
self.json['rpi.awb']['bayes'] = 0
|
||||
self.log += '\nGreyworld set'
|
||||
"""
|
||||
Check if alsc tables have been generated, if not then do awb without
|
||||
alsc correction
|
||||
"""
|
||||
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
|
||||
try:
|
||||
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
||||
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||
self.log += '\nALSC tables found successfully'
|
||||
except KeyError:
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
print('ERROR, no ALSC calibrations found for AWB')
|
||||
print('Performing AWB without ALSC tables')
|
||||
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
else:
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
"""
|
||||
call calibration function
|
||||
"""
|
||||
plot = "rpi.awb" in self.plot
|
||||
awb_out = awb(self, cal_cr_list, cal_cb_list, plot, grid_size)
|
||||
ct_curve, transverse_neg, transverse_pos = awb_out
|
||||
"""
|
||||
write output to json
|
||||
"""
|
||||
self.json['rpi.awb']['ct_curve'] = ct_curve
|
||||
self.json['rpi.awb']['sensitivity_r'] = 1.0
|
||||
self.json['rpi.awb']['sensitivity_b'] = 1.0
|
||||
self.json['rpi.awb']['transverse_pos'] = transverse_pos
|
||||
self.json['rpi.awb']['transverse_neg'] = transverse_neg
|
||||
self.log += '\nAWB calibration written to json file'
|
||||
print('Finished AWB calibration')
|
||||
|
||||
"""
|
||||
Auto lens shading correction completely mitigates the effects of lens shading for ech
|
||||
colour channel seperately, and then partially corrects for vignetting.
|
||||
The extent of the correction depends on the 'luminance_strength' parameter.
|
||||
"""
|
||||
def alsc_cal(self, luminance_strength, do_alsc_colour, grid_size, max_gain=8.0):
|
||||
if 'rpi.alsc' in self.disable:
|
||||
return 1
|
||||
print('\nStarting ALSC calibration')
|
||||
self.log_new_sec('ALSC')
|
||||
"""
|
||||
check if alsc images have been taken
|
||||
"""
|
||||
if len(self.imgs_alsc) == 0:
|
||||
print('\nError:\nNo alsc calibration images found')
|
||||
self.log += '\nERROR: No ALSC calibration images found!'
|
||||
self.log += '\nALSC calibration aborted!'
|
||||
return 1
|
||||
self.json['rpi.alsc']['luminance_strength'] = luminance_strength
|
||||
if self.grey and do_alsc_colour:
|
||||
print('Greyscale camera so only luminance_lut calculated')
|
||||
do_alsc_colour = False
|
||||
self.log += '\nWARNING: ALSC colour correction cannot be done on '
|
||||
self.log += 'greyscale image!\nALSC colour corrections forced off!'
|
||||
"""
|
||||
call calibration function
|
||||
"""
|
||||
plot = "rpi.alsc" in self.plot
|
||||
alsc_out = alsc_all(self, do_alsc_colour, plot, grid_size, max_gain=max_gain)
|
||||
cal_cr_list, cal_cb_list, luminance_lut, av_corn = alsc_out
|
||||
"""
|
||||
write output to json and finish if not do_alsc_colour
|
||||
"""
|
||||
if not do_alsc_colour:
|
||||
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
||||
self.json['rpi.alsc']['n_iter'] = 0
|
||||
self.log += '\nALSC calibrations written to json file'
|
||||
self.log += '\nNo colour calibrations performed'
|
||||
print('Finished ALSC calibrations')
|
||||
return 1
|
||||
|
||||
self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list
|
||||
self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list
|
||||
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
||||
self.log += '\nALSC colour and luminance tables written to json file'
|
||||
|
||||
"""
|
||||
The sigmas determine the strength of the adaptive algorithm, that
|
||||
cleans up any lens shading that has slipped through the alsc. These are
|
||||
determined by measuring a 'worst-case' difference between two alsc tables
|
||||
that are adjacent in colour space. If, however, only one colour
|
||||
temperature has been provided, then this difference can not be computed
|
||||
as only one table is available.
|
||||
To determine the sigmas you would have to estimate the error of an alsc
|
||||
table with only the image it was taken on as a check. To avoid circularity,
|
||||
dfault exaggerated sigmas are used, which can result in too much alsc and
|
||||
is therefore not advised.
|
||||
In general, just take another alsc picture at another colour temperature!
|
||||
"""
|
||||
|
||||
if len(self.imgs_alsc) == 1:
|
||||
self.json['rpi.alsc']['sigma'] = 0.005
|
||||
self.json['rpi.alsc']['sigma_Cb'] = 0.005
|
||||
print('\nWarning:\nOnly one alsc calibration found'
|
||||
'\nStandard sigmas used for adaptive algorithm.')
|
||||
print('Finished ALSC calibrations')
|
||||
self.log += '\nWARNING: Only one colour temperature found in '
|
||||
self.log += 'calibration images.\nStandard sigmas used for adaptive '
|
||||
self.log += 'algorithm!'
|
||||
return 1
|
||||
|
||||
"""
|
||||
obtain worst-case scenario residual sigmas
|
||||
"""
|
||||
sigma_r, sigma_b = get_sigma(self, cal_cr_list, cal_cb_list, grid_size)
|
||||
"""
|
||||
write output to json
|
||||
"""
|
||||
self.json['rpi.alsc']['sigma'] = np.round(sigma_r, 5)
|
||||
self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b, 5)
|
||||
self.log += '\nCalibrated sigmas written to json file'
|
||||
print('Finished ALSC calibrations')
|
||||
|
||||
"""
|
||||
Green equalisation fixes problems caused by discrepancies in green
|
||||
channels. This is done by measuring the effect on macbeth chart patches,
|
||||
which ideally would have the same green values throughout.
|
||||
An upper bound linear model is fit, fixing a threshold for the green
|
||||
differences that are corrected.
|
||||
"""
|
||||
def geq_cal(self):
|
||||
if 'rpi.geq' in self.disable:
|
||||
return 1
|
||||
print('\nStarting GEQ calibrations')
|
||||
self.log_new_sec('GEQ')
|
||||
"""
|
||||
perform calibration
|
||||
"""
|
||||
plot = 'rpi.geq' in self.plot
|
||||
slope, offset = geq_fit(self, plot)
|
||||
"""
|
||||
write output to json
|
||||
"""
|
||||
self.json['rpi.geq']['offset'] = offset
|
||||
self.json['rpi.geq']['slope'] = slope
|
||||
self.log += '\nGEQ calibrations written to json file'
|
||||
print('Finished GEQ calibrations')
|
||||
|
||||
"""
|
||||
Lux calibrations allow the lux level of a scene to be estimated by a ratio
|
||||
calculation. Lux values are used in the pipeline for algorithms such as AGC
|
||||
and AWB
|
||||
"""
|
||||
def lux_cal(self):
|
||||
if 'rpi.lux' in self.disable:
|
||||
return 1
|
||||
print('\nStarting LUX calibrations')
|
||||
self.log_new_sec('LUX')
|
||||
"""
|
||||
The lux calibration is done on a single image. For best effects, the
|
||||
image with lux level closest to 1000 is chosen.
|
||||
"""
|
||||
luxes = [Img.lux for Img in self.imgs]
|
||||
argmax = luxes.index(min(luxes, key=lambda l: abs(1000-l)))
|
||||
Img = self.imgs[argmax]
|
||||
self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux)
|
||||
self.log += '\nImage used: ' + Img.name
|
||||
if Img.lux < 50:
|
||||
self.log += '\nWARNING: Low lux could cause inaccurate calibrations!'
|
||||
"""
|
||||
do calibration
|
||||
"""
|
||||
lux_out, shutter_speed, gain = lux(self, Img)
|
||||
"""
|
||||
write output to json
|
||||
"""
|
||||
self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed
|
||||
self.json['rpi.lux']['reference_gain'] = gain
|
||||
self.json['rpi.lux']['reference_lux'] = Img.lux
|
||||
self.json['rpi.lux']['reference_Y'] = lux_out
|
||||
self.log += '\nLUX calibrations written to json file'
|
||||
print('Finished LUX calibrations')
|
||||
|
||||
"""
|
||||
Noise alibration attempts to describe the noise profile of the sensor. The
|
||||
calibration is run on macbeth images and the final output is taken as the average
|
||||
"""
|
||||
def noise_cal(self):
|
||||
if 'rpi.noise' in self.disable:
|
||||
return 1
|
||||
print('\nStarting NOISE calibrations')
|
||||
self.log_new_sec('NOISE')
|
||||
"""
|
||||
run calibration on all images and sort by slope.
|
||||
"""
|
||||
plot = "rpi.noise" in self.plot
|
||||
noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0])
|
||||
self.log += '\nFinished processing images'
|
||||
"""
|
||||
take the average of the interquartile
|
||||
"""
|
||||
length = len(noise_out)
|
||||
noise_out = np.mean(noise_out[length//4:1+3*length//4], axis=0)
|
||||
self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1]))
|
||||
self.log += 'slope = {:.3f}'.format(noise_out[0])
|
||||
"""
|
||||
write to json
|
||||
"""
|
||||
self.json['rpi.noise']['reference_constant'] = int(noise_out[1])
|
||||
self.json['rpi.noise']['reference_slope'] = round(noise_out[0], 3)
|
||||
self.log += '\nNOISE calibrations written to json'
|
||||
print('Finished NOISE calibrations')
|
||||
|
||||
"""
|
||||
Removes json entries that are turned off
|
||||
"""
|
||||
def json_remove(self, disable):
|
||||
self.log_new_sec('Disabling Options', cal=False)
|
||||
if len(self.disable) == 0:
|
||||
self.log += '\nNothing disabled!'
|
||||
return 1
|
||||
for key in disable:
|
||||
try:
|
||||
del self.json[key]
|
||||
self.log += '\nDisabled: ' + key
|
||||
except KeyError:
|
||||
self.log += '\nERROR: ' + key + ' not found!'
|
||||
"""
|
||||
writes the json dictionary to the raw json file then make pretty
|
||||
"""
|
||||
def write_json(self, version=2.0, target='bcm2835', grid_size=(16, 12)):
|
||||
"""
|
||||
Write json dictionary to file using our version 2 format
|
||||
"""
|
||||
|
||||
out_json = {
|
||||
"version": version,
|
||||
'target': target if target != 'vc4' else 'bcm2835',
|
||||
"algorithms": [{name: data} for name, data in self.json.items()],
|
||||
}
|
||||
|
||||
with open(self.jf, 'w') as f:
|
||||
f.write(pretty_print(out_json,
|
||||
custom_elems={'table': grid_size[0], 'luminance_lut': grid_size[0]}))
|
||||
|
||||
"""
|
||||
add a new section to the log file
|
||||
"""
|
||||
def log_new_sec(self, section, cal=True):
|
||||
self.log += '\n'+self.log_separator
|
||||
self.log += section
|
||||
if cal:
|
||||
self.log += ' Calibration'
|
||||
self.log += self.log_separator
|
||||
|
||||
"""
|
||||
write script arguments to log file
|
||||
"""
|
||||
def log_user_input(self, json_output, directory, config, log_output):
|
||||
self.log_new_sec('User Arguments', cal=False)
|
||||
self.log += '\nJson file output: ' + json_output
|
||||
self.log += '\nCalibration images directory: ' + directory
|
||||
if config is None:
|
||||
self.log += '\nNo configuration file input... using default options'
|
||||
elif config is False:
|
||||
self.log += '\nWARNING: Invalid configuration file path...'
|
||||
self.log += ' using default options'
|
||||
elif config is True:
|
||||
self.log += '\nWARNING: Invalid syntax in configuration file...'
|
||||
self.log += ' using default options'
|
||||
else:
|
||||
self.log += '\nConfiguration file: ' + config
|
||||
if log_output is None:
|
||||
self.log += '\nNo log file path input... using default: ctt_log.txt'
|
||||
else:
|
||||
self.log += '\nLog file output: ' + log_output
|
||||
|
||||
# if log_output
|
||||
|
||||
"""
|
||||
write log file
|
||||
"""
|
||||
def write_log(self, filename):
|
||||
if filename is None:
|
||||
filename = 'ctt_log.txt'
|
||||
self.log += '\n' + self.log_separator
|
||||
with open(filename, 'w') as logfile:
|
||||
logfile.write(self.log)
|
||||
|
||||
"""
|
||||
Add all images from directory, pass into relevant list of images and
|
||||
extrace lux and temperature values.
|
||||
"""
|
||||
def add_imgs(self, directory, mac_config, blacklevel=-1):
|
||||
self.log_new_sec('Image Loading', cal=False)
|
||||
img_suc_msg = 'Image loaded successfully!'
|
||||
print('\n\nLoading images from '+directory)
|
||||
self.log += '\nDirectory: ' + directory
|
||||
"""
|
||||
get list of files
|
||||
"""
|
||||
filename_list = get_photos(directory)
|
||||
print("Files found: {}".format(len(filename_list)))
|
||||
self.log += '\nFiles found: {}'.format(len(filename_list))
|
||||
"""
|
||||
iterate over files
|
||||
"""
|
||||
filename_list.sort()
|
||||
for filename in filename_list:
|
||||
address = directory + filename
|
||||
print('\nLoading image: '+filename)
|
||||
self.log += '\n\nImage: ' + filename
|
||||
"""
|
||||
obtain colour and lux value
|
||||
"""
|
||||
col, lux = get_col_lux(filename)
|
||||
"""
|
||||
Check if image is an alsc calibration image
|
||||
"""
|
||||
if 'alsc' in filename:
|
||||
Img = load_image(self, address, mac=False)
|
||||
self.log += '\nIdentified as an ALSC image'
|
||||
"""
|
||||
check if imagae data has been successfully unpacked
|
||||
"""
|
||||
if Img == 0:
|
||||
print('\nDISCARDED')
|
||||
self.log += '\nImage discarded!'
|
||||
continue
|
||||
"""
|
||||
check that image colour temperature has been successfuly obtained
|
||||
"""
|
||||
elif col is not None:
|
||||
"""
|
||||
if successful, append to list and continue to next image
|
||||
"""
|
||||
Img.col = col
|
||||
Img.name = filename
|
||||
self.log += '\nColour temperature: {} K'.format(col)
|
||||
self.imgs_alsc.append(Img)
|
||||
if blacklevel != -1:
|
||||
Img.blacklevel_16 = blacklevel
|
||||
print(img_suc_msg)
|
||||
continue
|
||||
else:
|
||||
print('Error! No colour temperature found!')
|
||||
self.log += '\nWARNING: Error reading colour temperature'
|
||||
self.log += '\nImage discarded!'
|
||||
print('DISCARDED')
|
||||
elif 'cac' in filename:
|
||||
Img = load_image(self, address, mac=False)
|
||||
self.log += '\nIdentified as an CAC image'
|
||||
Img.name = filename
|
||||
self.log += '\nColour temperature: {} K'.format(col)
|
||||
self.imgs_cac.append(Img)
|
||||
if blacklevel != -1:
|
||||
Img.blacklevel_16 = blacklevel
|
||||
print(img_suc_msg)
|
||||
continue
|
||||
else:
|
||||
self.log += '\nIdentified as macbeth chart image'
|
||||
"""
|
||||
if image isn't an alsc correction then it must have a lux and a
|
||||
colour temperature value to be useful
|
||||
"""
|
||||
if lux is None:
|
||||
print('DISCARDED')
|
||||
self.log += '\nWARNING: Error reading lux value'
|
||||
self.log += '\nImage discarded!'
|
||||
continue
|
||||
Img = load_image(self, address, mac_config)
|
||||
"""
|
||||
check that image data has been successfuly unpacked
|
||||
"""
|
||||
if Img == 0:
|
||||
print('DISCARDED')
|
||||
self.log += '\nImage discarded!'
|
||||
continue
|
||||
else:
|
||||
"""
|
||||
if successful, append to list and continue to next image
|
||||
"""
|
||||
Img.col, Img.lux = col, lux
|
||||
Img.name = filename
|
||||
self.log += '\nColour temperature: {} K'.format(col)
|
||||
self.log += '\nLux value: {} lx'.format(lux)
|
||||
if blacklevel != -1:
|
||||
Img.blacklevel_16 = blacklevel
|
||||
print(img_suc_msg)
|
||||
self.imgs.append(Img)
|
||||
|
||||
print('\nFinished loading images')
|
||||
|
||||
"""
|
||||
Check that usable images have been found
|
||||
Possible errors include:
|
||||
- no macbeth chart
|
||||
- incorrect filename/extension
|
||||
- images from different cameras
|
||||
"""
|
||||
def check_imgs(self, macbeth=True):
|
||||
self.log += '\n\nImages found:'
|
||||
self.log += '\nMacbeth : {}'.format(len(self.imgs))
|
||||
self.log += '\nALSC : {} '.format(len(self.imgs_alsc))
|
||||
self.log += '\nCAC: {} '.format(len(self.imgs_cac))
|
||||
self.log += '\n\nCamera metadata'
|
||||
"""
|
||||
check usable images found
|
||||
"""
|
||||
if len(self.imgs) == 0 and macbeth:
|
||||
print('\nERROR: No usable macbeth chart images found')
|
||||
self.log += '\nERROR: No usable macbeth chart images found'
|
||||
return 0
|
||||
elif len(self.imgs) == 0 and len(self.imgs_alsc) == 0 and len(self.imgs_cac) == 0:
|
||||
print('\nERROR: No usable images found')
|
||||
self.log += '\nERROR: No usable images found'
|
||||
return 0
|
||||
"""
|
||||
Double check that every image has come from the same camera...
|
||||
"""
|
||||
all_imgs = self.imgs + self.imgs_alsc + self.imgs_cac
|
||||
camNames = list(set([Img.camName for Img in all_imgs]))
|
||||
patterns = list(set([Img.pattern for Img in all_imgs]))
|
||||
sigbitss = list(set([Img.sigbits for Img in all_imgs]))
|
||||
blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs]))
|
||||
sizes = list(set([(Img.w, Img.h) for Img in all_imgs]))
|
||||
|
||||
if 1:
|
||||
self.grey = (patterns[0] == 128)
|
||||
self.blacklevel_16 = blacklevels[0]
|
||||
self.log += '\nName: {}'.format(camNames[0])
|
||||
self.log += '\nBayer pattern case: {}'.format(patterns[0])
|
||||
if self.grey:
|
||||
self.log += '\nGreyscale camera identified'
|
||||
self.log += '\nSignificant bits: {}'.format(sigbitss[0])
|
||||
self.log += '\nBlacklevel: {}'.format(blacklevels[0])
|
||||
self.log += '\nImage size: w = {} h = {}'.format(sizes[0][0], sizes[0][1])
|
||||
return 1
|
||||
else:
|
||||
print('\nERROR: Images from different cameras')
|
||||
self.log += '\nERROR: Images are from different cameras'
|
||||
return 0
|
||||
|
||||
|
||||
def run_ctt(json_output, directory, config, log_output, json_template, grid_size, target, alsc_only=False):
|
||||
"""
|
||||
check input files are jsons
|
||||
"""
|
||||
if json_output[-5:] != '.json':
|
||||
raise ArgError('\n\nError: Output must be a json file!')
|
||||
if config is not None:
|
||||
"""
|
||||
check if config file is actually a json
|
||||
"""
|
||||
if config[-5:] != '.json':
|
||||
raise ArgError('\n\nError: Config file must be a json file!')
|
||||
"""
|
||||
read configurations
|
||||
"""
|
||||
try:
|
||||
with open(config, 'r') as config_json:
|
||||
configs = json.load(config_json)
|
||||
except FileNotFoundError:
|
||||
configs = {}
|
||||
config = False
|
||||
except json.decoder.JSONDecodeError:
|
||||
configs = {}
|
||||
config = True
|
||||
|
||||
else:
|
||||
configs = {}
|
||||
"""
|
||||
load configurations from config file, if not given then set default
|
||||
"""
|
||||
disable = get_config(configs, "disable", [], 'list')
|
||||
plot = get_config(configs, "plot", [], 'list')
|
||||
awb_d = get_config(configs, "awb", {}, 'dict')
|
||||
greyworld = get_config(awb_d, "greyworld", 0, 'bool')
|
||||
alsc_d = get_config(configs, "alsc", {}, 'dict')
|
||||
do_alsc_colour = get_config(alsc_d, "do_alsc_colour", 1, 'bool')
|
||||
luminance_strength = get_config(alsc_d, "luminance_strength", 0.8, 'num')
|
||||
lsc_max_gain = get_config(alsc_d, "max_gain", 8.0, 'num')
|
||||
blacklevel = get_config(configs, "blacklevel", -1, 'num')
|
||||
macbeth_d = get_config(configs, "macbeth", {}, 'dict')
|
||||
mac_small = get_config(macbeth_d, "small", 0, 'bool')
|
||||
mac_show = get_config(macbeth_d, "show", 0, 'bool')
|
||||
mac_config = (mac_small, mac_show)
|
||||
print("Read lsc_max_gain", lsc_max_gain)
|
||||
|
||||
if blacklevel < -1 or blacklevel >= 2**16:
|
||||
print('\nInvalid blacklevel, defaulted to 64')
|
||||
blacklevel = -1
|
||||
|
||||
if luminance_strength < 0 or luminance_strength > 1:
|
||||
print('\nInvalid luminance_strength strength, defaulted to 0.5')
|
||||
luminance_strength = 0.5
|
||||
|
||||
"""
|
||||
sanitise directory path
|
||||
"""
|
||||
if directory[-1] != '/':
|
||||
directory += '/'
|
||||
"""
|
||||
initialise tuning tool and load images
|
||||
"""
|
||||
try:
|
||||
Cam = Camera(json_output, json=json_template)
|
||||
Cam.log_user_input(json_output, directory, config, log_output)
|
||||
if alsc_only:
|
||||
disable = set(Cam.json.keys()).symmetric_difference({"rpi.alsc"})
|
||||
Cam.disable = disable
|
||||
Cam.plot = plot
|
||||
Cam.add_imgs(directory, mac_config, blacklevel)
|
||||
except FileNotFoundError:
|
||||
raise ArgError('\n\nError: Input image directory not found!')
|
||||
|
||||
"""
|
||||
preform calibrations as long as check_imgs returns True
|
||||
If alsc is activated then it must be done before awb and ccm since the alsc
|
||||
tables are used in awb and ccm calibrations
|
||||
ccm also technically does an awb but it measures this from the macbeth
|
||||
chart in the image rather than using calibration data
|
||||
"""
|
||||
if Cam.check_imgs(macbeth=not alsc_only):
|
||||
if not alsc_only:
|
||||
Cam.json['rpi.black_level']['black_level'] = Cam.blacklevel_16
|
||||
Cam.json_remove(disable)
|
||||
print('\nSTARTING CALIBRATIONS')
|
||||
Cam.alsc_cal(luminance_strength, do_alsc_colour, grid_size, max_gain=lsc_max_gain)
|
||||
Cam.geq_cal()
|
||||
Cam.lux_cal()
|
||||
Cam.noise_cal()
|
||||
if "rpi.cac" in json_template:
|
||||
Cam.cac_cal(do_alsc_colour)
|
||||
Cam.awb_cal(greyworld, do_alsc_colour, grid_size)
|
||||
Cam.ccm_cal(do_alsc_colour, grid_size)
|
||||
|
||||
print('\nFINISHED CALIBRATIONS')
|
||||
Cam.write_json(target=target, grid_size=grid_size)
|
||||
Cam.write_log(log_output)
|
||||
print('\nCalibrations written to: '+json_output)
|
||||
if log_output is None:
|
||||
log_output = 'ctt_log.txt'
|
||||
print('Log file written to: '+log_output)
|
||||
pass
|
||||
else:
|
||||
Cam.write_log(log_output)
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
initialise calibration
|
||||
"""
|
||||
if len(sys.argv) == 1:
|
||||
print("""
|
||||
PiSP Tuning Tool version 1.0
|
||||
Required Arguments:
|
||||
'-i' : Calibration image directory.
|
||||
'-o' : Name of output json file.
|
||||
|
||||
Optional Arguments:
|
||||
'-t' : Target platform - 'pisp' or 'vc4'. Default 'vc4'
|
||||
'-c' : Config file for the CTT. If not passed, default parameters used.
|
||||
'-l' : Name of output log file. If not passed, 'ctt_log.txt' used.
|
||||
""")
|
||||
quit(0)
|
||||
else:
|
||||
"""
|
||||
parse input arguments
|
||||
"""
|
||||
json_output, directory, config, log_output, target = parse_input()
|
||||
if target == 'pisp':
|
||||
from ctt_pisp import json_template, grid_size
|
||||
elif target == 'vc4':
|
||||
from ctt_vc4 import json_template, grid_size
|
||||
|
||||
run_ctt(json_output, directory, config, log_output, json_template, grid_size, target)
|
||||
308
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_alsc.py
Normal file
308
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_alsc.py
Normal file
@@ -0,0 +1,308 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool for ALSC (auto lens shading correction)
|
||||
|
||||
from ctt_image_load import *
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
|
||||
"""
|
||||
preform alsc calibration on a set of images
|
||||
"""
|
||||
def alsc_all(Cam, do_alsc_colour, plot, grid_size=(16, 12), max_gain=8.0):
|
||||
imgs_alsc = Cam.imgs_alsc
|
||||
grid_w, grid_h = grid_size
|
||||
"""
|
||||
create list of colour temperatures and associated calibration tables
|
||||
"""
|
||||
list_col = []
|
||||
list_cr = []
|
||||
list_cb = []
|
||||
list_cg = []
|
||||
for Img in imgs_alsc:
|
||||
col, cr, cb, cg, size = alsc(Cam, Img, do_alsc_colour, plot, grid_size=grid_size, max_gain=max_gain)
|
||||
list_col.append(col)
|
||||
list_cr.append(cr)
|
||||
list_cb.append(cb)
|
||||
list_cg.append(cg)
|
||||
Cam.log += '\n'
|
||||
Cam.log += '\nFinished processing images'
|
||||
w, h, dx, dy = size
|
||||
Cam.log += '\nChannel dimensions: w = {} h = {}'.format(int(w), int(h))
|
||||
Cam.log += '\n16x12 grid rectangle size: w = {} h = {}'.format(dx, dy)
|
||||
|
||||
"""
|
||||
convert to numpy array for data manipulation
|
||||
"""
|
||||
list_col = np.array(list_col)
|
||||
list_cr = np.array(list_cr)
|
||||
list_cb = np.array(list_cb)
|
||||
list_cg = np.array(list_cg)
|
||||
|
||||
cal_cr_list = []
|
||||
cal_cb_list = []
|
||||
|
||||
"""
|
||||
only do colour calculations if required
|
||||
"""
|
||||
if do_alsc_colour:
|
||||
Cam.log += '\nALSC colour tables'
|
||||
for ct in sorted(set(list_col)):
|
||||
Cam.log += '\nColour temperature: {} K'.format(ct)
|
||||
"""
|
||||
average tables for the same colour temperature
|
||||
"""
|
||||
indices = np.where(list_col == ct)
|
||||
ct = int(ct)
|
||||
t_r = np.mean(list_cr[indices], axis=0)
|
||||
t_b = np.mean(list_cb[indices], axis=0)
|
||||
"""
|
||||
force numbers to be stored to 3dp.... :(
|
||||
"""
|
||||
t_r = np.where((100*t_r) % 1 <= 0.05, t_r+0.001, t_r)
|
||||
t_b = np.where((100*t_b) % 1 <= 0.05, t_b+0.001, t_b)
|
||||
t_r = np.where((100*t_r) % 1 >= 0.95, t_r-0.001, t_r)
|
||||
t_b = np.where((100*t_b) % 1 >= 0.95, t_b-0.001, t_b)
|
||||
t_r = np.round(t_r, 3)
|
||||
t_b = np.round(t_b, 3)
|
||||
r_corners = (t_r[0], t_r[grid_w - 1], t_r[-1], t_r[-grid_w])
|
||||
b_corners = (t_b[0], t_b[grid_w - 1], t_b[-1], t_b[-grid_w])
|
||||
middle_pos = (grid_h // 2 - 1) * grid_w + grid_w - 1
|
||||
r_cen = t_r[middle_pos]+t_r[middle_pos + 1]+t_r[middle_pos + grid_w]+t_r[middle_pos + grid_w + 1]
|
||||
r_cen = round(r_cen/4, 3)
|
||||
b_cen = t_b[middle_pos]+t_b[middle_pos + 1]+t_b[middle_pos + grid_w]+t_b[middle_pos + grid_w + 1]
|
||||
b_cen = round(b_cen/4, 3)
|
||||
Cam.log += '\nRed table corners: {}'.format(r_corners)
|
||||
Cam.log += '\nRed table centre: {}'.format(r_cen)
|
||||
Cam.log += '\nBlue table corners: {}'.format(b_corners)
|
||||
Cam.log += '\nBlue table centre: {}'.format(b_cen)
|
||||
cr_dict = {
|
||||
'ct': ct,
|
||||
'table': list(t_r)
|
||||
}
|
||||
cb_dict = {
|
||||
'ct': ct,
|
||||
'table': list(t_b)
|
||||
}
|
||||
cal_cr_list.append(cr_dict)
|
||||
cal_cb_list.append(cb_dict)
|
||||
Cam.log += '\n'
|
||||
else:
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
|
||||
"""
|
||||
average all values for luminance shading and return one table for all temperatures
|
||||
"""
|
||||
lum_lut = np.mean(list_cg, axis=0)
|
||||
lum_lut = np.where((100*lum_lut) % 1 <= 0.05, lum_lut+0.001, lum_lut)
|
||||
lum_lut = np.where((100*lum_lut) % 1 >= 0.95, lum_lut-0.001, lum_lut)
|
||||
lum_lut = list(np.round(lum_lut, 3))
|
||||
|
||||
"""
|
||||
calculate average corner for lsc gain calculation further on
|
||||
"""
|
||||
corners = (lum_lut[0], lum_lut[15], lum_lut[-1], lum_lut[-16])
|
||||
Cam.log += '\nLuminance table corners: {}'.format(corners)
|
||||
l_cen = lum_lut[5*16+7]+lum_lut[5*16+8]+lum_lut[6*16+7]+lum_lut[6*16+8]
|
||||
l_cen = round(l_cen/4, 3)
|
||||
Cam.log += '\nLuminance table centre: {}'.format(l_cen)
|
||||
av_corn = np.sum(corners)/4
|
||||
|
||||
return cal_cr_list, cal_cb_list, lum_lut, av_corn
|
||||
|
||||
|
||||
"""
|
||||
calculate g/r and g/b for 32x32 points arranged in a grid for a single image
|
||||
"""
|
||||
def alsc(Cam, Img, do_alsc_colour, plot=False, grid_size=(16, 12), max_gain=8.0):
|
||||
Cam.log += '\nProcessing image: ' + Img.name
|
||||
grid_w, grid_h = grid_size
|
||||
"""
|
||||
get channel in correct order
|
||||
"""
|
||||
channels = [Img.channels[i] for i in Img.order]
|
||||
"""
|
||||
calculate size of single rectangle.
|
||||
-(-(w-1)//32) is a ceiling division. w-1 is to deal robustly with the case
|
||||
where w is a multiple of 32.
|
||||
"""
|
||||
w, h = Img.w/2, Img.h/2
|
||||
dx, dy = int(-(-(w-1)//grid_w)), int(-(-(h-1)//grid_h))
|
||||
"""
|
||||
average the green channels into one
|
||||
"""
|
||||
av_ch_g = np.mean((channels[1:3]), axis=0)
|
||||
if do_alsc_colour:
|
||||
"""
|
||||
obtain grid_w x grid_h grid of intensities for each channel and subtract black level
|
||||
"""
|
||||
g = get_grid(av_ch_g, dx, dy, grid_size) - Img.blacklevel_16
|
||||
r = get_grid(channels[0], dx, dy, grid_size) - Img.blacklevel_16
|
||||
b = get_grid(channels[3], dx, dy, grid_size) - Img.blacklevel_16
|
||||
"""
|
||||
calculate ratios as 32 bit in order to be supported by medianBlur function
|
||||
"""
|
||||
cr = np.reshape(g/r, (grid_h, grid_w)).astype('float32')
|
||||
cb = np.reshape(g/b, (grid_h, grid_w)).astype('float32')
|
||||
cg = np.reshape(1/g, (grid_h, grid_w)).astype('float32')
|
||||
"""
|
||||
median blur to remove peaks and save as float 64
|
||||
"""
|
||||
cr = cv2.medianBlur(cr, 3).astype('float64')
|
||||
cr = cr/np.min(cr) # gain tables are easier for humans to read if the minimum is 1.0
|
||||
cb = cv2.medianBlur(cb, 3).astype('float64')
|
||||
cb = cb/np.min(cb)
|
||||
cg = cv2.medianBlur(cg, 3).astype('float64')
|
||||
cg = cg/np.min(cg)
|
||||
cg = [min(v, max_gain) for v in cg.flatten()] # never exceed the max luminance gain
|
||||
|
||||
"""
|
||||
debugging code showing 2D surface plot of vignetting. Quite useful for
|
||||
for sanity check
|
||||
"""
|
||||
if plot:
|
||||
hf = plt.figure(figsize=(8, 8))
|
||||
ha = hf.add_subplot(311, projection='3d')
|
||||
"""
|
||||
note Y is plotted as -Y so plot has same axes as image
|
||||
"""
|
||||
X, Y = np.meshgrid(range(grid_w), range(grid_h))
|
||||
ha.plot_surface(X, -Y, cr, cmap=cm.coolwarm, linewidth=0)
|
||||
ha.set_title('ALSC Plot\nImg: {}\n\ncr'.format(Img.str))
|
||||
hb = hf.add_subplot(312, projection='3d')
|
||||
hb.plot_surface(X, -Y, cb, cmap=cm.coolwarm, linewidth=0)
|
||||
hb.set_title('cb')
|
||||
hc = hf.add_subplot(313, projection='3d')
|
||||
hc.plot_surface(X, -Y, cg, cmap=cm.coolwarm, linewidth=0)
|
||||
hc.set_title('g')
|
||||
# print(Img.str)
|
||||
plt.show()
|
||||
|
||||
return Img.col, cr.flatten(), cb.flatten(), cg, (w, h, dx, dy)
|
||||
|
||||
else:
|
||||
"""
|
||||
only perform calculations for luminance shading
|
||||
"""
|
||||
g = get_grid(av_ch_g, dx, dy, grid_size) - Img.blacklevel_16
|
||||
cg = np.reshape(1/g, (grid_h, grid_w)).astype('float32')
|
||||
cg = cv2.medianBlur(cg, 3).astype('float64')
|
||||
cg = cg/np.min(cg)
|
||||
cg = [min(v, max_gain) for v in cg.flatten()] # never exceed the max luminance gain
|
||||
|
||||
if plot:
|
||||
hf = plt.figure(figssize=(8, 8))
|
||||
ha = hf.add_subplot(1, 1, 1, projection='3d')
|
||||
X, Y = np.meashgrid(range(grid_w), range(grid_h))
|
||||
ha.plot_surface(X, -Y, cg, cmap=cm.coolwarm, linewidth=0)
|
||||
ha.set_title('ALSC Plot (Luminance only!)\nImg: {}\n\ncg').format(Img.str)
|
||||
plt.show()
|
||||
|
||||
return Img.col, None, None, cg.flatten(), (w, h, dx, dy)
|
||||
|
||||
|
||||
"""
|
||||
Compresses channel down to a grid of the requested size
|
||||
"""
|
||||
def get_grid(chan, dx, dy, grid_size):
|
||||
grid_w, grid_h = grid_size
|
||||
grid = []
|
||||
"""
|
||||
since left and bottom border will not necessarily have rectangles of
|
||||
dimension dx x dy, the 32nd iteration has to be handled separately.
|
||||
"""
|
||||
for i in range(grid_h - 1):
|
||||
for j in range(grid_w - 1):
|
||||
grid.append(np.mean(chan[dy*i:dy*(1+i), dx*j:dx*(1+j)]))
|
||||
grid.append(np.mean(chan[dy*i:dy*(1+i), (grid_w - 1)*dx:]))
|
||||
for j in range(grid_w - 1):
|
||||
grid.append(np.mean(chan[(grid_h - 1)*dy:, dx*j:dx*(1+j)]))
|
||||
grid.append(np.mean(chan[(grid_h - 1)*dy:, (grid_w - 1)*dx:]))
|
||||
"""
|
||||
return as np.array, ready for further manipulation
|
||||
"""
|
||||
return np.array(grid)
|
||||
|
||||
|
||||
"""
|
||||
obtains sigmas for red and blue, effectively a measure of the 'error'
|
||||
"""
|
||||
def get_sigma(Cam, cal_cr_list, cal_cb_list, grid_size):
|
||||
Cam.log += '\nCalculating sigmas'
|
||||
"""
|
||||
provided colour alsc tables were generated for two different colour
|
||||
temperatures sigma is calculated by comparing two calibration temperatures
|
||||
adjacent in colour space
|
||||
"""
|
||||
"""
|
||||
create list of colour temperatures
|
||||
"""
|
||||
cts = [cal['ct'] for cal in cal_cr_list]
|
||||
# print(cts)
|
||||
"""
|
||||
calculate sigmas for each adjacent cts and return worst one
|
||||
"""
|
||||
sigma_rs = []
|
||||
sigma_bs = []
|
||||
for i in range(len(cts)-1):
|
||||
sigma_rs.append(calc_sigma(cal_cr_list[i]['table'], cal_cr_list[i+1]['table'], grid_size))
|
||||
sigma_bs.append(calc_sigma(cal_cb_list[i]['table'], cal_cb_list[i+1]['table'], grid_size))
|
||||
Cam.log += '\nColour temperature interval {} - {} K'.format(cts[i], cts[i+1])
|
||||
Cam.log += '\nSigma red: {}'.format(sigma_rs[-1])
|
||||
Cam.log += '\nSigma blue: {}'.format(sigma_bs[-1])
|
||||
|
||||
"""
|
||||
return maximum sigmas, not necessarily from the same colour temperature
|
||||
interval
|
||||
"""
|
||||
sigma_r = max(sigma_rs) if sigma_rs else 0.005
|
||||
sigma_b = max(sigma_bs) if sigma_bs else 0.005
|
||||
Cam.log += '\nMaximum sigmas: Red = {} Blue = {}'.format(sigma_r, sigma_b)
|
||||
|
||||
# print(sigma_rs, sigma_bs)
|
||||
# print(sigma_r, sigma_b)
|
||||
return sigma_r, sigma_b
|
||||
|
||||
|
||||
"""
|
||||
calculate sigma from two adjacent gain tables
|
||||
"""
|
||||
def calc_sigma(g1, g2, grid_size):
|
||||
grid_w, grid_h = grid_size
|
||||
"""
|
||||
reshape into 16x12 matrix
|
||||
"""
|
||||
g1 = np.reshape(g1, (grid_h, grid_w))
|
||||
g2 = np.reshape(g2, (grid_h, grid_w))
|
||||
"""
|
||||
apply gains to gain table
|
||||
"""
|
||||
gg = g1/g2
|
||||
if np.mean(gg) < 1:
|
||||
gg = 1/gg
|
||||
"""
|
||||
for each internal patch, compute average difference between it and its 4
|
||||
neighbours, then append to list
|
||||
"""
|
||||
diffs = []
|
||||
for i in range(grid_h - 2):
|
||||
for j in range(grid_w - 2):
|
||||
"""
|
||||
note indexing is incremented by 1 since all patches on borders are
|
||||
not counted
|
||||
"""
|
||||
diff = np.abs(gg[i+1][j+1]-gg[i][j+1])
|
||||
diff += np.abs(gg[i+1][j+1]-gg[i+2][j+1])
|
||||
diff += np.abs(gg[i+1][j+1]-gg[i+1][j])
|
||||
diff += np.abs(gg[i+1][j+1]-gg[i+1][j+2])
|
||||
diffs.append(diff/4)
|
||||
|
||||
"""
|
||||
return mean difference
|
||||
"""
|
||||
mean_diff = np.mean(diffs)
|
||||
return(np.round(mean_diff, 5))
|
||||
377
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_awb.py
Normal file
377
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_awb.py
Normal file
@@ -0,0 +1,377 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool for AWB
|
||||
|
||||
from ctt_image_load import *
|
||||
import matplotlib.pyplot as plt
|
||||
from bisect import bisect_left
|
||||
from scipy.optimize import fmin
|
||||
|
||||
|
||||
"""
|
||||
obtain piecewise linear approximation for colour curve
|
||||
"""
|
||||
def awb(Cam, cal_cr_list, cal_cb_list, plot, grid_size):
|
||||
imgs = Cam.imgs
|
||||
"""
|
||||
condense alsc calibration tables into one dictionary
|
||||
"""
|
||||
if cal_cr_list is None:
|
||||
colour_cals = None
|
||||
else:
|
||||
colour_cals = {}
|
||||
for cr, cb in zip(cal_cr_list, cal_cb_list):
|
||||
cr_tab = cr['table']
|
||||
cb_tab = cb['table']
|
||||
"""
|
||||
normalise tables so min value is 1
|
||||
"""
|
||||
cr_tab = cr_tab/np.min(cr_tab)
|
||||
cb_tab = cb_tab/np.min(cb_tab)
|
||||
colour_cals[cr['ct']] = [cr_tab, cb_tab]
|
||||
"""
|
||||
obtain data from greyscale macbeth patches
|
||||
"""
|
||||
rb_raw = []
|
||||
rbs_hat = []
|
||||
for Img in imgs:
|
||||
Cam.log += '\nProcessing '+Img.name
|
||||
"""
|
||||
get greyscale patches with alsc applied if alsc enabled.
|
||||
Note: if alsc is disabled then colour_cals will be set to None and the
|
||||
function will just return the greyscale patches
|
||||
"""
|
||||
r_patchs, b_patchs, g_patchs = get_alsc_patches(Img, colour_cals, grid_size=grid_size)
|
||||
"""
|
||||
calculate ratio of r, b to g
|
||||
"""
|
||||
r_g = np.mean(r_patchs/g_patchs)
|
||||
b_g = np.mean(b_patchs/g_patchs)
|
||||
Cam.log += '\n r : {:.4f} b : {:.4f}'.format(r_g, b_g)
|
||||
"""
|
||||
The curve tends to be better behaved in so-called hatspace.
|
||||
R, B, G represent the individual channels. The colour curve is plotted in
|
||||
r, b space, where:
|
||||
r = R/G
|
||||
b = B/G
|
||||
This will be referred to as dehatspace... (sorry)
|
||||
Hatspace is defined as:
|
||||
r_hat = R/(R+B+G)
|
||||
b_hat = B/(R+B+G)
|
||||
To convert from dehatspace to hastpace (hat operation):
|
||||
r_hat = r/(1+r+b)
|
||||
b_hat = b/(1+r+b)
|
||||
To convert from hatspace to dehatspace (dehat operation):
|
||||
r = r_hat/(1-r_hat-b_hat)
|
||||
b = b_hat/(1-r_hat-b_hat)
|
||||
Proof is left as an excercise to the reader...
|
||||
Throughout the code, r and b are sometimes referred to as r_g and b_g
|
||||
as a reminder that they are ratios
|
||||
"""
|
||||
r_g_hat = r_g/(1+r_g+b_g)
|
||||
b_g_hat = b_g/(1+r_g+b_g)
|
||||
Cam.log += '\n r_hat : {:.4f} b_hat : {:.4f}'.format(r_g_hat, b_g_hat)
|
||||
rbs_hat.append((r_g_hat, b_g_hat, Img.col))
|
||||
rb_raw.append((r_g, b_g))
|
||||
Cam.log += '\n'
|
||||
|
||||
Cam.log += '\nFinished processing images'
|
||||
"""
|
||||
sort all lits simultaneously by r_hat
|
||||
"""
|
||||
rbs_zip = list(zip(rbs_hat, rb_raw))
|
||||
rbs_zip.sort(key=lambda x: x[0][0])
|
||||
rbs_hat, rb_raw = list(zip(*rbs_zip))
|
||||
"""
|
||||
unzip tuples ready for processing
|
||||
"""
|
||||
rbs_hat = list(zip(*rbs_hat))
|
||||
rb_raw = list(zip(*rb_raw))
|
||||
"""
|
||||
fit quadratic fit to r_g hat and b_g_hat
|
||||
"""
|
||||
a, b, c = np.polyfit(rbs_hat[0], rbs_hat[1], 2)
|
||||
Cam.log += '\nFit quadratic curve in hatspace'
|
||||
"""
|
||||
the algorithm now approximates the shortest distance from each point to the
|
||||
curve in dehatspace. Since the fit is done in hatspace, it is easier to
|
||||
find the actual shortest distance in hatspace and use the projection back
|
||||
into dehatspace as an overestimate.
|
||||
The distance will be used for two things:
|
||||
1) In the case that colour temperature does not strictly decrease with
|
||||
increasing r/g, the closest point to the line will be chosen out of an
|
||||
increasing pair of colours.
|
||||
|
||||
2) To calculate transverse negative an dpositive, the maximum positive
|
||||
and negative distance from the line are chosen. This benefits from the
|
||||
overestimate as the transverse pos/neg are upper bound values.
|
||||
"""
|
||||
"""
|
||||
define fit function
|
||||
"""
|
||||
def f(x):
|
||||
return a*x**2 + b*x + c
|
||||
"""
|
||||
iterate over points (R, B are x and y coordinates of points) and calculate
|
||||
distance to line in dehatspace
|
||||
"""
|
||||
dists = []
|
||||
for i, (R, B) in enumerate(zip(rbs_hat[0], rbs_hat[1])):
|
||||
"""
|
||||
define function to minimise as square distance between datapoint and
|
||||
point on curve. Squaring is monotonic so minimising radius squared is
|
||||
equivalent to minimising radius
|
||||
"""
|
||||
def f_min(x):
|
||||
y = f(x)
|
||||
return((x-R)**2+(y-B)**2)
|
||||
"""
|
||||
perform optimisation with scipy.optmisie.fmin
|
||||
"""
|
||||
x_hat = fmin(f_min, R, disp=0)[0]
|
||||
y_hat = f(x_hat)
|
||||
"""
|
||||
dehat
|
||||
"""
|
||||
x = x_hat/(1-x_hat-y_hat)
|
||||
y = y_hat/(1-x_hat-y_hat)
|
||||
rr = R/(1-R-B)
|
||||
bb = B/(1-R-B)
|
||||
"""
|
||||
calculate euclidean distance in dehatspace
|
||||
"""
|
||||
dist = ((x-rr)**2+(y-bb)**2)**0.5
|
||||
"""
|
||||
return negative if point is below the fit curve
|
||||
"""
|
||||
if (x+y) > (rr+bb):
|
||||
dist *= -1
|
||||
dists.append(dist)
|
||||
Cam.log += '\nFound closest point on fit line to each point in dehatspace'
|
||||
"""
|
||||
calculate wiggle factors in awb. 10% added since this is an upper bound
|
||||
"""
|
||||
transverse_neg = - np.min(dists) * 1.1
|
||||
transverse_pos = np.max(dists) * 1.1
|
||||
Cam.log += '\nTransverse pos : {:.5f}'.format(transverse_pos)
|
||||
Cam.log += '\nTransverse neg : {:.5f}'.format(transverse_neg)
|
||||
"""
|
||||
set minimum transverse wiggles to 0.1 .
|
||||
Wiggle factors dictate how far off of the curve the algorithm searches. 0.1
|
||||
is a suitable minimum that gives better results for lighting conditions not
|
||||
within calibration dataset. Anything less will generalise poorly.
|
||||
"""
|
||||
if transverse_pos < 0.01:
|
||||
transverse_pos = 0.01
|
||||
Cam.log += '\nForced transverse pos to 0.01'
|
||||
if transverse_neg < 0.01:
|
||||
transverse_neg = 0.01
|
||||
Cam.log += '\nForced transverse neg to 0.01'
|
||||
|
||||
"""
|
||||
generate new b_hat values at each r_hat according to fit
|
||||
"""
|
||||
r_hat_fit = np.array(rbs_hat[0])
|
||||
b_hat_fit = a*r_hat_fit**2 + b*r_hat_fit + c
|
||||
"""
|
||||
transform from hatspace to dehatspace
|
||||
"""
|
||||
r_fit = r_hat_fit/(1-r_hat_fit-b_hat_fit)
|
||||
b_fit = b_hat_fit/(1-r_hat_fit-b_hat_fit)
|
||||
c_fit = np.round(rbs_hat[2], 0)
|
||||
"""
|
||||
round to 4dp
|
||||
"""
|
||||
r_fit = np.where((1000*r_fit) % 1 <= 0.05, r_fit+0.0001, r_fit)
|
||||
r_fit = np.where((1000*r_fit) % 1 >= 0.95, r_fit-0.0001, r_fit)
|
||||
b_fit = np.where((1000*b_fit) % 1 <= 0.05, b_fit+0.0001, b_fit)
|
||||
b_fit = np.where((1000*b_fit) % 1 >= 0.95, b_fit-0.0001, b_fit)
|
||||
r_fit = np.round(r_fit, 4)
|
||||
b_fit = np.round(b_fit, 4)
|
||||
"""
|
||||
The following code ensures that colour temperature decreases with
|
||||
increasing r/g
|
||||
"""
|
||||
"""
|
||||
iterate backwards over list for easier indexing
|
||||
"""
|
||||
i = len(c_fit) - 1
|
||||
while i > 0:
|
||||
if c_fit[i] > c_fit[i-1]:
|
||||
Cam.log += '\nColour temperature increase found\n'
|
||||
Cam.log += '{} K at r = {} to '.format(c_fit[i-1], r_fit[i-1])
|
||||
Cam.log += '{} K at r = {}'.format(c_fit[i], r_fit[i])
|
||||
"""
|
||||
if colour temperature increases then discard point furthest from
|
||||
the transformed fit (dehatspace)
|
||||
"""
|
||||
error_1 = abs(dists[i-1])
|
||||
error_2 = abs(dists[i])
|
||||
Cam.log += '\nDistances from fit:\n'
|
||||
Cam.log += '{} K : {:.5f} , '.format(c_fit[i], error_1)
|
||||
Cam.log += '{} K : {:.5f}'.format(c_fit[i-1], error_2)
|
||||
"""
|
||||
find bad index
|
||||
note that in python false = 0 and true = 1
|
||||
"""
|
||||
bad = i - (error_1 < error_2)
|
||||
Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
|
||||
Cam.log += 'it is furthest from fit'
|
||||
"""
|
||||
delete bad point
|
||||
"""
|
||||
r_fit = np.delete(r_fit, bad)
|
||||
b_fit = np.delete(b_fit, bad)
|
||||
c_fit = np.delete(c_fit, bad).astype(np.uint16)
|
||||
"""
|
||||
note that if a point has been discarded then the length has decreased
|
||||
by one, meaning that decreasing the index by one will reassess the kept
|
||||
point against the next point. It is therefore possible, in theory, for
|
||||
two adjacent points to be discarded, although probably rare
|
||||
"""
|
||||
i -= 1
|
||||
|
||||
"""
|
||||
return formatted ct curve, ordered by increasing colour temperature
|
||||
"""
|
||||
ct_curve = list(np.array(list(zip(b_fit, r_fit, c_fit))).flatten())[::-1]
|
||||
Cam.log += '\nFinal CT curve:'
|
||||
for i in range(len(ct_curve)//3):
|
||||
j = 3*i
|
||||
Cam.log += '\n ct: {} '.format(ct_curve[j])
|
||||
Cam.log += ' r: {} '.format(ct_curve[j+1])
|
||||
Cam.log += ' b: {} '.format(ct_curve[j+2])
|
||||
|
||||
"""
|
||||
plotting code for debug
|
||||
"""
|
||||
if plot:
|
||||
x = np.linspace(np.min(rbs_hat[0]), np.max(rbs_hat[0]), 100)
|
||||
y = a*x**2 + b*x + c
|
||||
plt.subplot(2, 1, 1)
|
||||
plt.title('hatspace')
|
||||
plt.plot(rbs_hat[0], rbs_hat[1], ls='--', color='blue')
|
||||
plt.plot(x, y, color='green', ls='-')
|
||||
plt.scatter(rbs_hat[0], rbs_hat[1], color='red')
|
||||
for i, ct in enumerate(rbs_hat[2]):
|
||||
plt.annotate(str(ct), (rbs_hat[0][i], rbs_hat[1][i]))
|
||||
plt.xlabel('$\\hat{r}$')
|
||||
plt.ylabel('$\\hat{b}$')
|
||||
"""
|
||||
optional set axes equal to shortest distance so line really does
|
||||
looks perpendicular and everybody is happy
|
||||
"""
|
||||
# ax = plt.gca()
|
||||
# ax.set_aspect('equal')
|
||||
plt.grid()
|
||||
plt.subplot(2, 1, 2)
|
||||
plt.title('dehatspace - indoors?')
|
||||
plt.plot(r_fit, b_fit, color='blue')
|
||||
plt.scatter(rb_raw[0], rb_raw[1], color='green')
|
||||
plt.scatter(r_fit, b_fit, color='red')
|
||||
for i, ct in enumerate(c_fit):
|
||||
plt.annotate(str(ct), (r_fit[i], b_fit[i]))
|
||||
plt.xlabel('$r$')
|
||||
plt.ylabel('$b$')
|
||||
"""
|
||||
optional set axes equal to shortest distance so line really does
|
||||
looks perpendicular and everybody is happy
|
||||
"""
|
||||
# ax = plt.gca()
|
||||
# ax.set_aspect('equal')
|
||||
plt.subplots_adjust(hspace=0.5)
|
||||
plt.grid()
|
||||
plt.show()
|
||||
"""
|
||||
end of plotting code
|
||||
"""
|
||||
return(ct_curve, np.round(transverse_pos, 5), np.round(transverse_neg, 5))
|
||||
|
||||
|
||||
"""
|
||||
obtain greyscale patches and perform alsc colour correction
|
||||
"""
|
||||
def get_alsc_patches(Img, colour_cals, grey=True, grid_size=(16, 12)):
|
||||
"""
|
||||
get patch centre coordinates, image colour and the actual
|
||||
patches for each channel, remembering to subtract blacklevel
|
||||
If grey then only greyscale patches considered
|
||||
"""
|
||||
grid_w, grid_h = grid_size
|
||||
if grey:
|
||||
cen_coords = Img.cen_coords[3::4]
|
||||
col = Img.col
|
||||
patches = [np.array(Img.patches[i]) for i in Img.order]
|
||||
r_patchs = patches[0][3::4] - Img.blacklevel_16
|
||||
b_patchs = patches[3][3::4] - Img.blacklevel_16
|
||||
"""
|
||||
note two green channels are averages
|
||||
"""
|
||||
g_patchs = (patches[1][3::4]+patches[2][3::4])/2 - Img.blacklevel_16
|
||||
else:
|
||||
cen_coords = Img.cen_coords
|
||||
col = Img.col
|
||||
patches = [np.array(Img.patches[i]) for i in Img.order]
|
||||
r_patchs = patches[0] - Img.blacklevel_16
|
||||
b_patchs = patches[3] - Img.blacklevel_16
|
||||
g_patchs = (patches[1]+patches[2])/2 - Img.blacklevel_16
|
||||
|
||||
if colour_cals is None:
|
||||
return r_patchs, b_patchs, g_patchs
|
||||
"""
|
||||
find where image colour fits in alsc colour calibration tables
|
||||
"""
|
||||
cts = list(colour_cals.keys())
|
||||
pos = bisect_left(cts, col)
|
||||
"""
|
||||
if img colour is below minimum or above maximum alsc calibration colour, simply
|
||||
pick extreme closest to img colour
|
||||
"""
|
||||
if pos % len(cts) == 0:
|
||||
"""
|
||||
this works because -0 = 0 = first and -1 = last index
|
||||
"""
|
||||
col_tabs = np.array(colour_cals[cts[-pos//len(cts)]])
|
||||
"""
|
||||
else, perform linear interpolation between existing alsc colour
|
||||
calibration tables
|
||||
"""
|
||||
else:
|
||||
bef = cts[pos-1]
|
||||
aft = cts[pos]
|
||||
da = col-bef
|
||||
db = aft-col
|
||||
bef_tabs = np.array(colour_cals[bef])
|
||||
aft_tabs = np.array(colour_cals[aft])
|
||||
col_tabs = (bef_tabs*db + aft_tabs*da)/(da+db)
|
||||
col_tabs = np.reshape(col_tabs, (2, grid_h, grid_w))
|
||||
"""
|
||||
calculate dx, dy used to calculate alsc table
|
||||
"""
|
||||
w, h = Img.w/2, Img.h/2
|
||||
dx, dy = int(-(-(w-1)//grid_w)), int(-(-(h-1)//grid_h))
|
||||
"""
|
||||
make list of pairs of gains for each patch by selecting the correct value
|
||||
in alsc colour calibration table
|
||||
"""
|
||||
patch_gains = []
|
||||
for cen in cen_coords:
|
||||
x, y = cen[0]//dx, cen[1]//dy
|
||||
# We could probably do with some better spatial interpolation here?
|
||||
col_gains = (col_tabs[0][y][x], col_tabs[1][y][x])
|
||||
patch_gains.append(col_gains)
|
||||
|
||||
"""
|
||||
multiply the r and b channels in each patch by the respective gain, finally
|
||||
performing the alsc colour correction
|
||||
"""
|
||||
for i, gains in enumerate(patch_gains):
|
||||
r_patchs[i] = r_patchs[i] * gains[0]
|
||||
b_patchs[i] = b_patchs[i] * gains[1]
|
||||
|
||||
"""
|
||||
return greyscale patches, g channel and correct r, b channels
|
||||
"""
|
||||
return r_patchs, b_patchs, g_patchs
|
||||
228
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_cac.py
Normal file
228
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_cac.py
Normal file
@@ -0,0 +1,228 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2023, Raspberry Pi Ltd
|
||||
#
|
||||
# ctt_cac.py - CAC (Chromatic Aberration Correction) tuning tool
|
||||
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
|
||||
from ctt_dots_locator import find_dots_locations
|
||||
|
||||
|
||||
# This is the wrapper file that creates a JSON entry for you to append
|
||||
# to your camera tuning file.
|
||||
# It calculates the chromatic aberration at different points throughout
|
||||
# the image and uses that to produce a martix that can then be used
|
||||
# in the camera tuning files to correct this aberration.
|
||||
|
||||
|
||||
def pprint_array(array):
|
||||
# Function to print the array in a tidier format
|
||||
array = array
|
||||
output = ""
|
||||
for i in range(len(array)):
|
||||
for j in range(len(array[0])):
|
||||
output += str(round(array[i, j], 2)) + ", "
|
||||
# Add the necessary indentation to the array
|
||||
output += "\n "
|
||||
# Cut off the end of the array (nicely formats it)
|
||||
return output[:-22]
|
||||
|
||||
|
||||
def plot_shifts(red_shifts, blue_shifts):
|
||||
# If users want, they can pass a command line option to show the shifts on a graph
|
||||
# Can be useful to check that the functions are all working, and that the sample
|
||||
# images are doing the right thing
|
||||
Xs = np.array(red_shifts)[:, 0]
|
||||
Ys = np.array(red_shifts)[:, 1]
|
||||
Zs = np.array(red_shifts)[:, 2]
|
||||
Zs2 = np.array(red_shifts)[:, 3]
|
||||
Zs3 = np.array(blue_shifts)[:, 2]
|
||||
Zs4 = np.array(blue_shifts)[:, 3]
|
||||
|
||||
fig, axs = plt.subplots(2, 2)
|
||||
ax = fig.add_subplot(2, 2, 1, projection='3d')
|
||||
ax.scatter(Xs, Ys, Zs, cmap=cm.jet, linewidth=0)
|
||||
ax.set_title('Red X Shift')
|
||||
ax = fig.add_subplot(2, 2, 2, projection='3d')
|
||||
ax.scatter(Xs, Ys, Zs2, cmap=cm.jet, linewidth=0)
|
||||
ax.set_title('Red Y Shift')
|
||||
ax = fig.add_subplot(2, 2, 3, projection='3d')
|
||||
ax.scatter(Xs, Ys, Zs3, cmap=cm.jet, linewidth=0)
|
||||
ax.set_title('Blue X Shift')
|
||||
ax = fig.add_subplot(2, 2, 4, projection='3d')
|
||||
ax.scatter(Xs, Ys, Zs4, cmap=cm.jet, linewidth=0)
|
||||
ax.set_title('Blue Y Shift')
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
def shifts_to_yaml(red_shift, blue_shift, image_dimensions, output_grid_size=9):
|
||||
# Convert the shifts to a numpy array for easier handling and initialise other variables
|
||||
red_shifts = np.array(red_shift)
|
||||
blue_shifts = np.array(blue_shift)
|
||||
# create a grid that's smaller than the output grid, which we then interpolate from to get the output values
|
||||
xrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
xbgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
yrgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
ybgrid = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
|
||||
xrsgrid = []
|
||||
xbsgrid = []
|
||||
yrsgrid = []
|
||||
ybsgrid = []
|
||||
xg = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
yg = np.zeros((output_grid_size - 1, output_grid_size - 1))
|
||||
|
||||
# Format the grids - numpy doesn't work for this, it wants a
|
||||
# nice uniformly spaced grid, which we don't know if we have yet, hence the rather mundane setup
|
||||
for x in range(output_grid_size - 1):
|
||||
xrsgrid.append([])
|
||||
yrsgrid.append([])
|
||||
xbsgrid.append([])
|
||||
ybsgrid.append([])
|
||||
for y in range(output_grid_size - 1):
|
||||
xrsgrid[x].append([])
|
||||
yrsgrid[x].append([])
|
||||
xbsgrid[x].append([])
|
||||
ybsgrid[x].append([])
|
||||
|
||||
image_size = (image_dimensions[0], image_dimensions[1])
|
||||
gridxsize = image_size[0] / (output_grid_size - 1)
|
||||
gridysize = image_size[1] / (output_grid_size - 1)
|
||||
|
||||
# Iterate through each dot, and it's shift values and put these into the correct grid location
|
||||
for red_shift in red_shifts:
|
||||
xgridloc = int(red_shift[0] / gridxsize)
|
||||
ygridloc = int(red_shift[1] / gridysize)
|
||||
xrsgrid[xgridloc][ygridloc].append(red_shift[2])
|
||||
yrsgrid[xgridloc][ygridloc].append(red_shift[3])
|
||||
|
||||
for blue_shift in blue_shifts:
|
||||
xgridloc = int(blue_shift[0] / gridxsize)
|
||||
ygridloc = int(blue_shift[1] / gridysize)
|
||||
xbsgrid[xgridloc][ygridloc].append(blue_shift[2])
|
||||
ybsgrid[xgridloc][ygridloc].append(blue_shift[3])
|
||||
|
||||
# Now calculate the average pixel shift for each square in the grid
|
||||
for x in range(output_grid_size - 1):
|
||||
for y in range(output_grid_size - 1):
|
||||
xrgrid[x, y] = np.mean(xrsgrid[x][y])
|
||||
yrgrid[x, y] = np.mean(yrsgrid[x][y])
|
||||
xbgrid[x, y] = np.mean(xbsgrid[x][y])
|
||||
ybgrid[x, y] = np.mean(ybsgrid[x][y])
|
||||
|
||||
# Next, we start to interpolate the central points of the grid that gets passed to the tuning file
|
||||
input_grids = np.array([xrgrid, yrgrid, xbgrid, ybgrid])
|
||||
output_grids = np.zeros((4, output_grid_size, output_grid_size))
|
||||
|
||||
# Interpolate the centre of the grid
|
||||
output_grids[:, 1:-1, 1:-1] = (input_grids[:, 1:, :-1] + input_grids[:, 1:, 1:] + input_grids[:, :-1, 1:] + input_grids[:, :-1, :-1]) / 4
|
||||
|
||||
# Edge cases:
|
||||
output_grids[:, 1:-1, 0] = ((input_grids[:, :-1, 0] + input_grids[:, 1:, 0]) / 2 - output_grids[:, 1:-1, 1]) * 2 + output_grids[:, 1:-1, 1]
|
||||
output_grids[:, 1:-1, -1] = ((input_grids[:, :-1, 7] + input_grids[:, 1:, 7]) / 2 - output_grids[:, 1:-1, -2]) * 2 + output_grids[:, 1:-1, -2]
|
||||
output_grids[:, 0, 1:-1] = ((input_grids[:, 0, :-1] + input_grids[:, 0, 1:]) / 2 - output_grids[:, 1, 1:-1]) * 2 + output_grids[:, 1, 1:-1]
|
||||
output_grids[:, -1, 1:-1] = ((input_grids[:, 7, :-1] + input_grids[:, 7, 1:]) / 2 - output_grids[:, -2, 1:-1]) * 2 + output_grids[:, -2, 1:-1]
|
||||
|
||||
# Corner Cases:
|
||||
output_grids[:, 0, 0] = (output_grids[:, 0, 1] - output_grids[:, 1, 1]) + (output_grids[:, 1, 0] - output_grids[:, 1, 1]) + output_grids[:, 1, 1]
|
||||
output_grids[:, 0, -1] = (output_grids[:, 0, -2] - output_grids[:, 1, -2]) + (output_grids[:, 1, -1] - output_grids[:, 1, -2]) + output_grids[:, 1, -2]
|
||||
output_grids[:, -1, 0] = (output_grids[:, -1, 1] - output_grids[:, -2, 1]) + (output_grids[:, -2, 0] - output_grids[:, -2, 1]) + output_grids[:, -2, 1]
|
||||
output_grids[:, -1, -1] = (output_grids[:, -2, -1] - output_grids[:, -2, -2]) + (output_grids[:, -1, -2] - output_grids[:, -2, -2]) + output_grids[:, -2, -2]
|
||||
|
||||
# Below, we swap the x and the y coordinates, and also multiply by a factor of -1
|
||||
# This is due to the PiSP (standard) dimensions being flipped in comparison to
|
||||
# PIL image coordinate directions, hence why xr -> yr. Also, the shifts calculated are colour shifts,
|
||||
# and the PiSP block asks for the values it should shift by (hence the * -1, to convert from colour shift to a pixel shift)
|
||||
|
||||
output_grid_yr, output_grid_xr, output_grid_yb, output_grid_xb = output_grids * -1
|
||||
return output_grid_xr, output_grid_yr, output_grid_xb, output_grid_yb
|
||||
|
||||
|
||||
def analyse_dot(dot, dot_location=[0, 0]):
|
||||
# Scan through the dot, calculate the centroid of each colour channel by doing:
|
||||
# pixel channel brightness * distance from top left corner
|
||||
# Sum these, and divide by the sum of each channel's brightnesses to get a centroid for each channel
|
||||
red_channel = np.array(dot)[:, :, 0]
|
||||
y_num_pixels = len(red_channel[0])
|
||||
x_num_pixels = len(red_channel)
|
||||
yred_weight = np.sum(np.dot(red_channel, np.arange(y_num_pixels)))
|
||||
xred_weight = np.sum(np.dot(np.arange(x_num_pixels), red_channel))
|
||||
red_sum = np.sum(red_channel)
|
||||
|
||||
green_channel = np.array(dot)[:, :, 1]
|
||||
ygreen_weight = np.sum(np.dot(green_channel, np.arange(y_num_pixels)))
|
||||
xgreen_weight = np.sum(np.dot(np.arange(x_num_pixels), green_channel))
|
||||
green_sum = np.sum(green_channel)
|
||||
|
||||
blue_channel = np.array(dot)[:, :, 2]
|
||||
yblue_weight = np.sum(np.dot(blue_channel, np.arange(y_num_pixels)))
|
||||
xblue_weight = np.sum(np.dot(np.arange(x_num_pixels), blue_channel))
|
||||
blue_sum = np.sum(blue_channel)
|
||||
|
||||
# We return this structure. It contains 2 arrays that contain:
|
||||
# the locations of the dot center, along with the channel shifts in the x and y direction:
|
||||
# [ [red_center_x, red_center_y, red_x_shift, red_y_shift], [blue_center_x, blue_center_y, blue_x_shift, blue_y_shift] ]
|
||||
|
||||
return [[int(dot_location[0]) + int(len(dot) / 2), int(dot_location[1]) + int(len(dot[0]) / 2), xred_weight / red_sum - xgreen_weight / green_sum, yred_weight / red_sum - ygreen_weight / green_sum], [dot_location[0] + int(len(dot) / 2), dot_location[1] + int(len(dot[0]) / 2), xblue_weight / blue_sum - xgreen_weight / green_sum, yblue_weight / blue_sum - ygreen_weight / green_sum]]
|
||||
|
||||
|
||||
def cac(Cam):
|
||||
filelist = Cam.imgs_cac
|
||||
|
||||
Cam.log += '\nCAC analysing files: {}'.format(str(filelist))
|
||||
np.set_printoptions(precision=3)
|
||||
np.set_printoptions(suppress=True)
|
||||
|
||||
# Create arrays to hold all the dots data and their colour offsets
|
||||
red_shift = [] # Format is: [[Dot Center X, Dot Center Y, x shift, y shift]]
|
||||
blue_shift = []
|
||||
# Iterate through the files
|
||||
# Multiple files is reccomended to average out the lens aberration through rotations
|
||||
for file in filelist:
|
||||
Cam.log += '\nCAC processing file'
|
||||
print("\n Processing file")
|
||||
# Read the raw RGB values
|
||||
rgb = file.rgb
|
||||
image_size = [file.h, file.w] # Image size, X, Y
|
||||
# Create a colour copy of the RGB values to use later in the calibration
|
||||
imout = Image.new(mode="RGB", size=image_size)
|
||||
rgb_image = np.array(imout)
|
||||
# The rgb values need reshaping from a 1d array to a 3d array to be worked with easily
|
||||
rgb.reshape((image_size[0], image_size[1], 3))
|
||||
rgb_image = rgb
|
||||
|
||||
# Pass the RGB image through to the dots locating program
|
||||
# Returns an array of the dots (colour rectangles around the dots), and an array of their locations
|
||||
print("Finding dots")
|
||||
Cam.log += '\nFinding dots'
|
||||
dots, dots_locations = find_dots_locations(rgb_image)
|
||||
|
||||
# Now, analyse each dot. Work out the centroid of each colour channel, and use that to work out
|
||||
# by how far the chromatic aberration has shifted each channel
|
||||
Cam.log += '\nDots found: {}'.format(str(len(dots)))
|
||||
print('Dots found: ' + str(len(dots)))
|
||||
|
||||
for dot, dot_location in zip(dots, dots_locations):
|
||||
if len(dot) > 0:
|
||||
if (dot_location[0] > 0) and (dot_location[1] > 0):
|
||||
ret = analyse_dot(dot, dot_location)
|
||||
red_shift.append(ret[0])
|
||||
blue_shift.append(ret[1])
|
||||
|
||||
# Take our arrays of red shifts and locations, push them through to be interpolated into a 9x9 matrix
|
||||
# for the CAC block to handle and then store these as a .json file to be added to the camera
|
||||
# tuning file
|
||||
print("\nCreating output grid")
|
||||
Cam.log += '\nCreating output grid'
|
||||
rx, ry, bx, by = shifts_to_yaml(red_shift, blue_shift, image_size)
|
||||
|
||||
print("CAC correction complete!")
|
||||
Cam.log += '\nCAC correction complete!'
|
||||
|
||||
# Give the JSON dict back to the main ctt program
|
||||
return {"strength": 1.0, "lut_rx": list(rx.round(2).reshape(81)), "lut_ry": list(ry.round(2).reshape(81)), "lut_bx": list(bx.round(2).reshape(81)), "lut_by": list(by.round(2).reshape(81))}
|
||||
404
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ccm.py
Normal file
404
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ccm.py
Normal file
@@ -0,0 +1,404 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool for CCM (colour correction matrix)
|
||||
|
||||
from ctt_image_load import *
|
||||
from ctt_awb import get_alsc_patches
|
||||
import colors
|
||||
from scipy.optimize import minimize
|
||||
from ctt_visualise import visualise_macbeth_chart
|
||||
import numpy as np
|
||||
"""
|
||||
takes 8-bit macbeth chart values, degammas and returns 16 bit
|
||||
"""
|
||||
|
||||
'''
|
||||
This program has many options from which to derive the color matrix from.
|
||||
The first is average. This minimises the average delta E across all patches of
|
||||
the macbeth chart. Testing across all cameras yeilded this as the most color
|
||||
accurate and vivid. Other options are avalible however.
|
||||
Maximum minimises the maximum Delta E of the patches. It iterates through till
|
||||
a minimum maximum is found (so that there is
|
||||
not one patch that deviates wildly.)
|
||||
This yields generally good results but overall the colors are less accurate
|
||||
Have a fiddle with maximum and see what you think.
|
||||
The final option allows you to select the patches for which to average across.
|
||||
This means that you can bias certain patches, for instance if you want the
|
||||
reds to be more accurate.
|
||||
'''
|
||||
|
||||
matrix_selection_types = ["average", "maximum", "patches"]
|
||||
typenum = 0 # select from array above, 0 = average, 1 = maximum, 2 = patches
|
||||
test_patches = [1, 2, 5, 8, 9, 12, 14]
|
||||
|
||||
'''
|
||||
Enter patches to test for. Can also be entered twice if you
|
||||
would like twice as much bias on one patch.
|
||||
'''
|
||||
|
||||
|
||||
def degamma(x):
|
||||
x = x / ((2 ** 8) - 1) # takes 255 and scales it down to one
|
||||
x = np.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
|
||||
x = x * ((2 ** 16) - 1) # takes one and scales up to 65535, 16 bit color
|
||||
return x
|
||||
|
||||
|
||||
def gamma(x):
|
||||
# Take 3 long array of color values and gamma them
|
||||
return [((colour / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255 for colour in x]
|
||||
|
||||
|
||||
"""
|
||||
FInds colour correction matrices for list of images
|
||||
"""
|
||||
|
||||
|
||||
def ccm(Cam, cal_cr_list, cal_cb_list, grid_size):
|
||||
global matrix_selection_types, typenum
|
||||
imgs = Cam.imgs
|
||||
"""
|
||||
standard macbeth chart colour values
|
||||
"""
|
||||
m_rgb = np.array([ # these are in RGB
|
||||
[116, 81, 67], # dark skin
|
||||
[199, 147, 129], # light skin
|
||||
[91, 122, 156], # blue sky
|
||||
[90, 108, 64], # foliage
|
||||
[130, 128, 176], # blue flower
|
||||
[92, 190, 172], # bluish green
|
||||
[224, 124, 47], # orange
|
||||
[68, 91, 170], # purplish blue
|
||||
[198, 82, 97], # moderate red
|
||||
[94, 58, 106], # purple
|
||||
[159, 189, 63], # yellow green
|
||||
[230, 162, 39], # orange yellow
|
||||
[35, 63, 147], # blue
|
||||
[67, 149, 74], # green
|
||||
[180, 49, 57], # red
|
||||
[238, 198, 20], # yellow
|
||||
[193, 84, 151], # magenta
|
||||
[0, 136, 170], # cyan (goes out of gamut)
|
||||
[245, 245, 243], # white 9.5
|
||||
[200, 202, 202], # neutral 8
|
||||
[161, 163, 163], # neutral 6.5
|
||||
[121, 121, 122], # neutral 5
|
||||
[82, 84, 86], # neutral 3.5
|
||||
[49, 49, 51] # black 2
|
||||
])
|
||||
"""
|
||||
convert reference colours from srgb to rgb
|
||||
"""
|
||||
m_srgb = degamma(m_rgb) # now in 16 bit color.
|
||||
|
||||
# Produce array of LAB values for ideal color chart
|
||||
m_lab = [colors.RGB_to_LAB(color / 256) for color in m_srgb]
|
||||
|
||||
"""
|
||||
reorder reference values to match how patches are ordered
|
||||
"""
|
||||
m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3))
|
||||
m_lab = np.array([m_lab[i::6] for i in range(6)]).reshape((24, 3))
|
||||
m_rgb = np.array([m_rgb[i::6] for i in range(6)]).reshape((24, 3))
|
||||
"""
|
||||
reformat alsc correction tables or set colour_cals to None if alsc is
|
||||
deactivated
|
||||
"""
|
||||
if cal_cr_list is None:
|
||||
colour_cals = None
|
||||
else:
|
||||
colour_cals = {}
|
||||
for cr, cb in zip(cal_cr_list, cal_cb_list):
|
||||
cr_tab = cr['table']
|
||||
cb_tab = cb['table']
|
||||
"""
|
||||
normalise tables so min value is 1
|
||||
"""
|
||||
cr_tab = cr_tab / np.min(cr_tab)
|
||||
cb_tab = cb_tab / np.min(cb_tab)
|
||||
colour_cals[cr['ct']] = [cr_tab, cb_tab]
|
||||
|
||||
"""
|
||||
for each image, perform awb and alsc corrections.
|
||||
Then calculate the colour correction matrix for that image, recording the
|
||||
ccm and the colour tempertaure.
|
||||
"""
|
||||
ccm_tab = {}
|
||||
for Img in imgs:
|
||||
Cam.log += '\nProcessing image: ' + Img.name
|
||||
"""
|
||||
get macbeth patches with alsc applied if alsc enabled.
|
||||
Note: if alsc is disabled then colour_cals will be set to None and no
|
||||
the function will simply return the macbeth patches
|
||||
"""
|
||||
r, b, g = get_alsc_patches(Img, colour_cals, grey=False, grid_size=grid_size)
|
||||
"""
|
||||
do awb
|
||||
Note: awb is done by measuring the macbeth chart in the image, rather
|
||||
than from the awb calibration. This is done so the awb will be perfect
|
||||
and the ccm matrices will be more accurate.
|
||||
"""
|
||||
r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4]
|
||||
r_g = np.mean(r_greys / g_greys)
|
||||
b_g = np.mean(b_greys / g_greys)
|
||||
r = r / r_g
|
||||
b = b / b_g
|
||||
"""
|
||||
normalise brightness wrt reference macbeth colours and then average
|
||||
each channel for each patch
|
||||
"""
|
||||
gain = np.mean(m_srgb) / np.mean((r, g, b))
|
||||
Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain)
|
||||
r = np.mean(gain * r, axis=1)
|
||||
b = np.mean(gain * b, axis=1)
|
||||
g = np.mean(gain * g, axis=1)
|
||||
"""
|
||||
calculate ccm matrix
|
||||
"""
|
||||
# ==== All of below should in sRGB ===##
|
||||
sumde = 0
|
||||
ccm = do_ccm(r, g, b, m_srgb)
|
||||
# This is the initial guess that our optimisation code works with.
|
||||
original_ccm = ccm
|
||||
r1 = ccm[0]
|
||||
r2 = ccm[1]
|
||||
g1 = ccm[3]
|
||||
g2 = ccm[4]
|
||||
b1 = ccm[6]
|
||||
b2 = ccm[7]
|
||||
'''
|
||||
COLOR MATRIX LOOKS AS BELOW
|
||||
R1 R2 R3 Rval Outr
|
||||
G1 G2 G3 * Gval = G
|
||||
B1 B2 B3 Bval B
|
||||
Will be optimising 6 elements and working out the third element using 1-r1-r2 = r3
|
||||
'''
|
||||
|
||||
x0 = [r1, r2, g1, g2, b1, b2]
|
||||
'''
|
||||
We use our old CCM as the initial guess for the program to find the
|
||||
optimised matrix
|
||||
'''
|
||||
result = minimize(guess, x0, args=(r, g, b, m_lab), tol=0.01)
|
||||
'''
|
||||
This produces a color matrix which has the lowest delta E possible,
|
||||
based off the input data. Note it is impossible for this to reach
|
||||
zero since the input data is imperfect
|
||||
'''
|
||||
|
||||
Cam.log += ("\n \n Optimised Matrix Below: \n \n")
|
||||
[r1, r2, g1, g2, b1, b2] = result.x
|
||||
# The new, optimised color correction matrix values
|
||||
optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)]
|
||||
|
||||
# This is the optimised Color Matrix (preserving greys by summing rows up to 1)
|
||||
Cam.log += str(optimised_ccm)
|
||||
Cam.log += "\n Old Color Correction Matrix Below \n"
|
||||
Cam.log += str(ccm)
|
||||
|
||||
formatted_ccm = np.array(original_ccm).reshape((3, 3))
|
||||
|
||||
'''
|
||||
below is a whole load of code that then applies the latest color
|
||||
matrix, and returns LAB values for color. This can then be used
|
||||
to calculate the final delta E
|
||||
'''
|
||||
optimised_ccm_rgb = [] # Original Color Corrected Matrix RGB / LAB
|
||||
optimised_ccm_lab = []
|
||||
|
||||
formatted_optimised_ccm = np.array(optimised_ccm).reshape((3, 3))
|
||||
after_gamma_rgb = []
|
||||
after_gamma_lab = []
|
||||
|
||||
for RGB in zip(r, g, b):
|
||||
ccm_applied_rgb = np.dot(formatted_ccm, (np.array(RGB) / 256))
|
||||
optimised_ccm_rgb.append(gamma(ccm_applied_rgb))
|
||||
optimised_ccm_lab.append(colors.RGB_to_LAB(ccm_applied_rgb))
|
||||
|
||||
optimised_ccm_applied_rgb = np.dot(formatted_optimised_ccm, np.array(RGB) / 256)
|
||||
after_gamma_rgb.append(gamma(optimised_ccm_applied_rgb))
|
||||
after_gamma_lab.append(colors.RGB_to_LAB(optimised_ccm_applied_rgb))
|
||||
'''
|
||||
Gamma After RGB / LAB - not used in calculations, only used for visualisation
|
||||
We now want to spit out some data that shows
|
||||
how the optimisation has improved the color matrices
|
||||
'''
|
||||
Cam.log += "Here are the Improvements"
|
||||
|
||||
# CALCULATE WORST CASE delta e
|
||||
old_worst_delta_e = 0
|
||||
before_average = transform_and_evaluate(formatted_ccm, r, g, b, m_lab)
|
||||
new_worst_delta_e = 0
|
||||
after_average = transform_and_evaluate(formatted_optimised_ccm, r, g, b, m_lab)
|
||||
for i in range(24):
|
||||
old_delta_e = deltae(optimised_ccm_lab[i], m_lab[i]) # Current Old Delta E
|
||||
new_delta_e = deltae(after_gamma_lab[i], m_lab[i]) # Current New Delta E
|
||||
if old_delta_e > old_worst_delta_e:
|
||||
old_worst_delta_e = old_delta_e
|
||||
if new_delta_e > new_worst_delta_e:
|
||||
new_worst_delta_e = new_delta_e
|
||||
|
||||
Cam.log += "Before color correction matrix was optimised, we got an average delta E of " + str(before_average) + " and a maximum delta E of " + str(old_worst_delta_e)
|
||||
Cam.log += "After color correction matrix was optimised, we got an average delta E of " + str(after_average) + " and a maximum delta E of " + str(new_worst_delta_e)
|
||||
|
||||
visualise_macbeth_chart(m_rgb, optimised_ccm_rgb, after_gamma_rgb, str(Img.col) + str(matrix_selection_types[typenum]))
|
||||
'''
|
||||
The program will also save some visualisations of improvements.
|
||||
Very pretty to look at. Top rectangle is ideal, Left square is
|
||||
before optimisation, right square is after.
|
||||
'''
|
||||
|
||||
"""
|
||||
if a ccm has already been calculated for that temperature then don't
|
||||
overwrite but save both. They will then be averaged later on
|
||||
""" # Now going to use optimised color matrix, optimised_ccm
|
||||
if Img.col in ccm_tab.keys():
|
||||
ccm_tab[Img.col].append(optimised_ccm)
|
||||
else:
|
||||
ccm_tab[Img.col] = [optimised_ccm]
|
||||
Cam.log += '\n'
|
||||
|
||||
Cam.log += '\nFinished processing images'
|
||||
"""
|
||||
average any ccms that share a colour temperature
|
||||
"""
|
||||
for k, v in ccm_tab.items():
|
||||
tab = np.mean(v, axis=0)
|
||||
tab = np.where((10000 * tab) % 1 <= 0.05, tab + 0.00001, tab)
|
||||
tab = np.where((10000 * tab) % 1 >= 0.95, tab - 0.00001, tab)
|
||||
ccm_tab[k] = list(np.round(tab, 5))
|
||||
Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k)
|
||||
|
||||
"""
|
||||
return all ccms with respective colour temperature in the correct format,
|
||||
sorted by their colour temperature
|
||||
"""
|
||||
sorted_ccms = sorted(ccm_tab.items(), key=lambda kv: kv[0])
|
||||
ccms = []
|
||||
for i in sorted_ccms:
|
||||
ccms.append({
|
||||
'ct': i[0],
|
||||
'ccm': i[1]
|
||||
})
|
||||
return ccms
|
||||
|
||||
|
||||
def guess(x0, r, g, b, m_lab): # provides a method of numerical feedback for the optimisation code
|
||||
[r1, r2, g1, g2, b1, b2] = x0
|
||||
ccm = np.array([r1, r2, (1 - r1 - r2),
|
||||
g1, g2, (1 - g1 - g2),
|
||||
b1, b2, (1 - b1 - b2)]).reshape((3, 3)) # format the matrix correctly
|
||||
return transform_and_evaluate(ccm, r, g, b, m_lab)
|
||||
|
||||
|
||||
def transform_and_evaluate(ccm, r, g, b, m_lab): # Transforms colors to LAB and applies the correction matrix
|
||||
# create list of matrix changed colors
|
||||
realrgb = []
|
||||
for RGB in zip(r, g, b):
|
||||
rgb_post_ccm = np.dot(ccm, np.array(RGB) / 256) # This is RGB values after the color correction matrix has been applied
|
||||
realrgb.append(colors.RGB_to_LAB(rgb_post_ccm))
|
||||
# now compare that with m_lab and return numeric result, averaged for each patch
|
||||
return (sumde(realrgb, m_lab) / 24) # returns an average result of delta E
|
||||
|
||||
|
||||
def sumde(listA, listB):
|
||||
global typenum, test_patches
|
||||
sumde = 0
|
||||
maxde = 0
|
||||
patchde = [] # Create array of the delta E values for each patch. useful for optimisation of certain patches
|
||||
for listA_item, listB_item in zip(listA, listB):
|
||||
if maxde < (deltae(listA_item, listB_item)):
|
||||
maxde = deltae(listA_item, listB_item)
|
||||
patchde.append(deltae(listA_item, listB_item))
|
||||
sumde += deltae(listA_item, listB_item)
|
||||
'''
|
||||
The different options specified at the start allow for
|
||||
the maximum to be returned, average or specific patches
|
||||
'''
|
||||
if typenum == 0:
|
||||
return sumde
|
||||
if typenum == 1:
|
||||
return maxde
|
||||
if typenum == 2:
|
||||
output = sum([patchde[test_patch] for test_patch in test_patches])
|
||||
# Selects only certain patches and returns the output for them
|
||||
return output
|
||||
|
||||
|
||||
"""
|
||||
calculates the ccm for an individual image.
|
||||
ccms are calculated in rgb space, and are fit by hand. Although it is a 3x3
|
||||
matrix, each row must add up to 1 in order to conserve greyness, simplifying
|
||||
calculation.
|
||||
The initial CCM is calculated in RGB, and then optimised in LAB color space
|
||||
This simplifies the initial calculation but then gets us the accuracy of
|
||||
using LAB color space.
|
||||
"""
|
||||
|
||||
|
||||
def do_ccm(r, g, b, m_srgb):
|
||||
rb = r-b
|
||||
gb = g-b
|
||||
rb_2s = (rb * rb)
|
||||
rb_gbs = (rb * gb)
|
||||
gb_2s = (gb * gb)
|
||||
|
||||
r_rbs = rb * (m_srgb[..., 0] - b)
|
||||
r_gbs = gb * (m_srgb[..., 0] - b)
|
||||
g_rbs = rb * (m_srgb[..., 1] - b)
|
||||
g_gbs = gb * (m_srgb[..., 1] - b)
|
||||
b_rbs = rb * (m_srgb[..., 2] - b)
|
||||
b_gbs = gb * (m_srgb[..., 2] - b)
|
||||
|
||||
"""
|
||||
Obtain least squares fit
|
||||
"""
|
||||
rb_2 = np.sum(rb_2s)
|
||||
gb_2 = np.sum(gb_2s)
|
||||
rb_gb = np.sum(rb_gbs)
|
||||
r_rb = np.sum(r_rbs)
|
||||
r_gb = np.sum(r_gbs)
|
||||
g_rb = np.sum(g_rbs)
|
||||
g_gb = np.sum(g_gbs)
|
||||
b_rb = np.sum(b_rbs)
|
||||
b_gb = np.sum(b_gbs)
|
||||
|
||||
det = rb_2 * gb_2 - rb_gb * rb_gb
|
||||
|
||||
"""
|
||||
Raise error if matrix is singular...
|
||||
This shouldn't really happen with real data but if it does just take new
|
||||
pictures and try again, not much else to be done unfortunately...
|
||||
"""
|
||||
if det < 0.001:
|
||||
raise ArithmeticError
|
||||
|
||||
r_a = (gb_2 * r_rb - rb_gb * r_gb) / det
|
||||
r_b = (rb_2 * r_gb - rb_gb * r_rb) / det
|
||||
"""
|
||||
Last row can be calculated by knowing the sum must be 1
|
||||
"""
|
||||
r_c = 1 - r_a - r_b
|
||||
|
||||
g_a = (gb_2 * g_rb - rb_gb * g_gb) / det
|
||||
g_b = (rb_2 * g_gb - rb_gb * g_rb) / det
|
||||
g_c = 1 - g_a - g_b
|
||||
|
||||
b_a = (gb_2 * b_rb - rb_gb * b_gb) / det
|
||||
b_b = (rb_2 * b_gb - rb_gb * b_rb) / det
|
||||
b_c = 1 - b_a - b_b
|
||||
|
||||
"""
|
||||
format ccm
|
||||
"""
|
||||
ccm = [r_a, r_b, r_c, g_a, g_b, g_c, b_a, b_b, b_c]
|
||||
|
||||
return ccm
|
||||
|
||||
|
||||
def deltae(colorA, colorB):
|
||||
return ((colorA[0] - colorB[0]) ** 2 + (colorA[1] - colorB[1]) ** 2 + (colorA[2] - colorB[2]) ** 2) ** 0.5
|
||||
# return ((colorA[1]-colorB[1]) * * 2 + (colorA[2]-colorB[2]) * * 2) * * 0.5
|
||||
# UNCOMMENT IF YOU WANT TO NEGLECT LUMINANCE FROM CALCULATION OF DELTA E
|
||||
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"disable": [],
|
||||
"plot": [],
|
||||
"alsc": {
|
||||
"do_alsc_colour": 1,
|
||||
"luminance_strength": 0.8,
|
||||
"max_gain": 8.0
|
||||
},
|
||||
"awb": {
|
||||
"greyworld": 0
|
||||
},
|
||||
"blacklevel": -1,
|
||||
"macbeth": {
|
||||
"small": 0,
|
||||
"show": 0
|
||||
}
|
||||
}
|
||||
118
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_dots_locator.py
Normal file
118
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_dots_locator.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2023, Raspberry Pi Ltd
|
||||
#
|
||||
# find_dots.py - Used by CAC algorithm to convert image to set of dots
|
||||
|
||||
'''
|
||||
This file takes the black and white version of the image, along with
|
||||
the color version. It then located the black dots on the image by
|
||||
thresholding dark pixels.
|
||||
In a rather fun way, the algorithm bounces around the thresholded area in a random path
|
||||
We then use the maximum and minimum of these paths to determine the dot shape and size
|
||||
This info is then used to return colored dots and locations back to the main file
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
from PIL import Image, ImageEnhance, ImageFilter
|
||||
|
||||
|
||||
def find_dots_locations(rgb_image, color_threshold=100, dots_edge_avoid=75, image_edge_avoid=10, search_path_length=500, grid_scan_step_size=10, logfile=open("log.txt", "a+")):
|
||||
# Initialise some starting variables
|
||||
pixels = Image.fromarray(rgb_image)
|
||||
pixels = pixels.convert("L")
|
||||
enhancer = ImageEnhance.Contrast(pixels)
|
||||
im_output = enhancer.enhance(1.4)
|
||||
# We smooth it slightly to make it easier for the dot recognition program to locate the dots
|
||||
im_output = im_output.filter(ImageFilter.GaussianBlur(radius=2))
|
||||
bw_image = np.array(im_output)
|
||||
|
||||
location = [0, 0]
|
||||
dots = []
|
||||
dots_location = []
|
||||
# the program takes away the edges - we don't want a dot that is half a circle, the
|
||||
# centroids would all be wrong
|
||||
for x in range(dots_edge_avoid, len(bw_image) - dots_edge_avoid, grid_scan_step_size):
|
||||
for y in range(dots_edge_avoid, len(bw_image[0]) - dots_edge_avoid, grid_scan_step_size):
|
||||
location = [x, y]
|
||||
scrap_dot = False # A variable used to make sure that this is a valid dot
|
||||
if (bw_image[location[0], location[1]] < color_threshold) and not (scrap_dot):
|
||||
heading = "south" # Define a starting direction to move in
|
||||
coords = []
|
||||
for i in range(search_path_length): # Creates a path of length `search_path_length`. This turns out to always be enough to work out the rough shape of the dot.
|
||||
# Now make sure that the thresholded area doesn't come within 10 pixels of the edge of the image, ensures we capture all the CA
|
||||
if ((image_edge_avoid < location[0] < len(bw_image) - image_edge_avoid) and (image_edge_avoid < location[1] < len(bw_image[0]) - image_edge_avoid)) and not (scrap_dot):
|
||||
if heading == "south":
|
||||
if bw_image[location[0] + 1, location[1]] < color_threshold:
|
||||
# Here, notice it does not go south, but actually goes southeast
|
||||
# This is crucial in ensuring that we make our way around the majority of the dot
|
||||
location[0] = location[0] + 1
|
||||
location[1] = location[1] + 1
|
||||
heading = "south"
|
||||
else:
|
||||
# This happens when we reach a thresholded edge. We now randomly change direction and keep searching
|
||||
dir = random.randint(1, 2)
|
||||
if dir == 1:
|
||||
heading = "west"
|
||||
if dir == 2:
|
||||
heading = "east"
|
||||
|
||||
if heading == "east":
|
||||
if bw_image[location[0], location[1] + 1] < color_threshold:
|
||||
location[1] = location[1] + 1
|
||||
heading = "east"
|
||||
else:
|
||||
dir = random.randint(1, 2)
|
||||
if dir == 1:
|
||||
heading = "north"
|
||||
if dir == 2:
|
||||
heading = "south"
|
||||
|
||||
if heading == "west":
|
||||
if bw_image[location[0], location[1] - 1] < color_threshold:
|
||||
location[1] = location[1] - 1
|
||||
heading = "west"
|
||||
else:
|
||||
dir = random.randint(1, 2)
|
||||
if dir == 1:
|
||||
heading = "north"
|
||||
if dir == 2:
|
||||
heading = "south"
|
||||
|
||||
if heading == "north":
|
||||
if bw_image[location[0] - 1, location[1]] < color_threshold:
|
||||
location[0] = location[0] - 1
|
||||
heading = "north"
|
||||
else:
|
||||
dir = random.randint(1, 2)
|
||||
if dir == 1:
|
||||
heading = "west"
|
||||
if dir == 2:
|
||||
heading = "east"
|
||||
# Log where our particle travels across the dot
|
||||
coords.append([location[0], location[1]])
|
||||
else:
|
||||
scrap_dot = True # We just don't have enough space around the dot, discard this one, and move on
|
||||
if not scrap_dot:
|
||||
# get the size of the dot surrounding the dot
|
||||
x_coords = np.array(coords)[:, 0]
|
||||
y_coords = np.array(coords)[:, 1]
|
||||
hsquaresize = max(list(x_coords)) - min(list(x_coords))
|
||||
vsquaresize = max(list(y_coords)) - min(list(y_coords))
|
||||
# Create the bounding coordinates of the rectangle surrounding the dot
|
||||
# Program uses the dotsize + half of the dotsize to ensure we get all that color fringing
|
||||
extra_space_factor = 0.45
|
||||
top_left_x = (min(list(x_coords)) - int(hsquaresize * extra_space_factor))
|
||||
btm_right_x = max(list(x_coords)) + int(hsquaresize * extra_space_factor)
|
||||
top_left_y = (min(list(y_coords)) - int(vsquaresize * extra_space_factor))
|
||||
btm_right_y = max(list(y_coords)) + int(vsquaresize * extra_space_factor)
|
||||
# Overwrite the area of the dot to ensure we don't use it again
|
||||
bw_image[top_left_x:btm_right_x, top_left_y:btm_right_y] = 255
|
||||
# Add the color version of the dot to the list to send off, along with some coordinates.
|
||||
dots.append(rgb_image[top_left_x:btm_right_x, top_left_y:btm_right_y])
|
||||
dots_location.append([top_left_x, top_left_y])
|
||||
else:
|
||||
# Dot was too close to the image border to be useable
|
||||
pass
|
||||
return dots, dots_location
|
||||
181
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_geq.py
Normal file
181
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_geq.py
Normal file
@@ -0,0 +1,181 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool for GEQ (green equalisation)
|
||||
|
||||
from ctt_tools import *
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.optimize as optimize
|
||||
|
||||
|
||||
"""
|
||||
Uses green differences in macbeth patches to fit green equalisation threshold
|
||||
model. Ideally, all macbeth chart centres would fall below the threshold as
|
||||
these should be corrected by geq.
|
||||
"""
|
||||
def geq_fit(Cam, plot):
|
||||
imgs = Cam.imgs
|
||||
"""
|
||||
green equalisation to mitigate mazing.
|
||||
Fits geq model by looking at difference
|
||||
between greens in macbeth patches
|
||||
"""
|
||||
geqs = np.array([geq(Cam, Img)*Img.againQ8_norm for Img in imgs])
|
||||
Cam.log += '\nProcessed all images'
|
||||
geqs = geqs.reshape((-1, 2))
|
||||
"""
|
||||
data is sorted by green difference and top half is selected since higher
|
||||
green difference data define the decision boundary.
|
||||
"""
|
||||
geqs = np.array(sorted(geqs, key=lambda r: np.abs((r[1]-r[0])/r[0])))
|
||||
|
||||
length = len(geqs)
|
||||
g0 = geqs[length//2:, 0]
|
||||
g1 = geqs[length//2:, 1]
|
||||
gdiff = np.abs(g0-g1)
|
||||
"""
|
||||
find linear fit by minimising asymmetric least square errors
|
||||
in order to cover most of the macbeth images.
|
||||
the philosophy here is that every macbeth patch should fall within the
|
||||
threshold, hence the upper bound approach
|
||||
"""
|
||||
def f(params):
|
||||
m, c = params
|
||||
a = gdiff - (m*g0+c)
|
||||
"""
|
||||
asymmetric square error returns:
|
||||
1.95 * a**2 if a is positive
|
||||
0.05 * a**2 if a is negative
|
||||
"""
|
||||
return(np.sum(a**2+0.95*np.abs(a)*a))
|
||||
|
||||
initial_guess = [0.01, 500]
|
||||
"""
|
||||
Nelder-Mead is usually not the most desirable optimisation method
|
||||
but has been chosen here due to its robustness to undifferentiability
|
||||
(is that a word?)
|
||||
"""
|
||||
result = optimize.minimize(f, initial_guess, method='Nelder-Mead')
|
||||
"""
|
||||
need to check if the fit worked correectly
|
||||
"""
|
||||
if result.success:
|
||||
slope, offset = result.x
|
||||
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
|
||||
Cam.log += 'offset = {}'.format(int(offset))
|
||||
"""
|
||||
optional plotting code
|
||||
"""
|
||||
if plot:
|
||||
x = np.linspace(max(g0)*1.1, 100)
|
||||
y = slope*x + offset
|
||||
plt.title('GEQ Asymmetric \'Upper Bound\' Fit')
|
||||
plt.plot(x, y, color='red', ls='--', label='fit')
|
||||
plt.scatter(g0, gdiff, color='b', label='data')
|
||||
plt.ylabel('Difference in green channels')
|
||||
plt.xlabel('Green value')
|
||||
|
||||
"""
|
||||
This upper bound asymmetric gives correct order of magnitude values.
|
||||
The pipeline approximates a 1st derivative of a gaussian with some
|
||||
linear piecewise functions, introducing arbitrary cutoffs. For
|
||||
pessimistic geq, the model parameters have been increased by a
|
||||
scaling factor/constant.
|
||||
|
||||
Feel free to tune these or edit the json files directly if you
|
||||
belive there are still mazing effects left (threshold too low) or if you
|
||||
think it is being overcorrected (threshold too high).
|
||||
We have gone for a one size fits most approach that will produce
|
||||
acceptable results in most applications.
|
||||
"""
|
||||
slope *= 1.5
|
||||
offset += 201
|
||||
Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope)
|
||||
Cam.log += ' offset = {}'.format(int(offset))
|
||||
"""
|
||||
clamp offset at 0 due to pipeline considerations
|
||||
"""
|
||||
if offset < 0:
|
||||
Cam.log += '\nOffset raised to 0'
|
||||
offset = 0
|
||||
"""
|
||||
optional plotting code
|
||||
"""
|
||||
if plot:
|
||||
y2 = slope*x + offset
|
||||
plt.plot(x, y2, color='green', ls='--', label='scaled fit')
|
||||
plt.grid()
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
"""
|
||||
the case where for some reason the fit didn't work correctly
|
||||
|
||||
Transpose data and then least squares linear fit. Transposing data
|
||||
makes it robust to many patches where green difference is the same
|
||||
since they only contribute to one error minimisation, instead of dragging
|
||||
the entire linear fit down.
|
||||
"""
|
||||
|
||||
else:
|
||||
print('\nError! Couldn\'t fit asymmetric lest squares')
|
||||
print(result.message)
|
||||
Cam.log += '\nWARNING: Asymmetric least squares fit failed! '
|
||||
Cam.log += 'Standard fit used could possibly lead to worse results'
|
||||
fit = np.polyfit(gdiff, g0, 1)
|
||||
offset, slope = -fit[1]/fit[0], 1/fit[0]
|
||||
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
|
||||
Cam.log += 'offset = {}'.format(int(offset))
|
||||
"""
|
||||
optional plotting code
|
||||
"""
|
||||
if plot:
|
||||
x = np.linspace(max(g0)*1.1, 100)
|
||||
y = slope*x + offset
|
||||
plt.title('GEQ Linear Fit')
|
||||
plt.plot(x, y, color='red', ls='--', label='fit')
|
||||
plt.scatter(g0, gdiff, color='b', label='data')
|
||||
plt.ylabel('Difference in green channels')
|
||||
plt.xlabel('Green value')
|
||||
"""
|
||||
Scaling factors (see previous justification)
|
||||
The model here will not be an upper bound so scaling factors have
|
||||
been increased.
|
||||
This method of deriving geq model parameters is extremely arbitrary
|
||||
and undesirable.
|
||||
"""
|
||||
slope *= 2.5
|
||||
offset += 301
|
||||
Cam.log += '\nFit after correction factors: slope = {:.5f}'.format(slope)
|
||||
Cam.log += ' offset = {}'.format(int(offset))
|
||||
|
||||
if offset < 0:
|
||||
Cam.log += '\nOffset raised to 0'
|
||||
offset = 0
|
||||
|
||||
"""
|
||||
optional plotting code
|
||||
"""
|
||||
if plot:
|
||||
y2 = slope*x + offset
|
||||
plt.plot(x, y2, color='green', ls='--', label='scaled fit')
|
||||
plt.legend()
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return round(slope, 5), int(offset)
|
||||
|
||||
|
||||
""""
|
||||
Return green channels of macbeth patches
|
||||
returns g0, g1 where
|
||||
> g0 is green next to red
|
||||
> g1 is green next to blue
|
||||
"""
|
||||
def geq(Cam, Img):
|
||||
Cam.log += '\nProcessing image {}'.format(Img.name)
|
||||
patches = [Img.patches[i] for i in Img.order][1:3]
|
||||
g_patches = np.array([(np.mean(patches[0][i]), np.mean(patches[1][i])) for i in range(24)])
|
||||
Cam.log += '\n'
|
||||
return(g_patches)
|
||||
455
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_image_load.py
Normal file
455
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_image_load.py
Normal file
@@ -0,0 +1,455 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019-2020, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool image loading
|
||||
|
||||
from ctt_tools import *
|
||||
from ctt_macbeth_locator import *
|
||||
import json
|
||||
import pyexiv2 as pyexif
|
||||
import rawpy as raw
|
||||
|
||||
|
||||
"""
|
||||
Image class load image from raw data and extracts metadata.
|
||||
|
||||
Once image is extracted from data, it finds 24 16x16 patches for each
|
||||
channel, centred at the macbeth chart squares
|
||||
"""
|
||||
class Image:
|
||||
def __init__(self, buf):
|
||||
self.buf = buf
|
||||
self.patches = None
|
||||
self.saturated = False
|
||||
|
||||
'''
|
||||
obtain metadata from buffer
|
||||
'''
|
||||
def get_meta(self):
|
||||
self.ver = ba_to_b(self.buf[4:5])
|
||||
self.w = ba_to_b(self.buf[0xd0:0xd2])
|
||||
self.h = ba_to_b(self.buf[0xd2:0xd4])
|
||||
self.pad = ba_to_b(self.buf[0xd4:0xd6])
|
||||
self.fmt = self.buf[0xf5]
|
||||
self.sigbits = 2*self.fmt + 4
|
||||
self.pattern = self.buf[0xf4]
|
||||
self.exposure = ba_to_b(self.buf[0x90:0x94])
|
||||
self.againQ8 = ba_to_b(self.buf[0x94:0x96])
|
||||
self.againQ8_norm = self.againQ8/256
|
||||
camName = self.buf[0x10:0x10+128]
|
||||
camName_end = camName.find(0x00)
|
||||
self.camName = self.buf[0x10:0x10+128][:camName_end].decode()
|
||||
|
||||
"""
|
||||
Channel order depending on bayer pattern
|
||||
"""
|
||||
bayer_case = {
|
||||
0: (0, 1, 2, 3), # red
|
||||
1: (2, 0, 3, 1), # green next to red
|
||||
2: (3, 2, 1, 0), # green next to blue
|
||||
3: (1, 0, 3, 2), # blue
|
||||
128: (0, 1, 2, 3) # arbitrary order for greyscale casw
|
||||
}
|
||||
self.order = bayer_case[self.pattern]
|
||||
|
||||
'''
|
||||
manual blacklevel - not robust
|
||||
'''
|
||||
if 'ov5647' in self.camName:
|
||||
self.blacklevel = 16
|
||||
else:
|
||||
self.blacklevel = 64
|
||||
self.blacklevel_16 = self.blacklevel << (6)
|
||||
return 1
|
||||
|
||||
'''
|
||||
print metadata for debug
|
||||
'''
|
||||
def print_meta(self):
|
||||
print('\nData:')
|
||||
print(' ver = {}'.format(self.ver))
|
||||
print(' w = {}'.format(self.w))
|
||||
print(' h = {}'.format(self.h))
|
||||
print(' pad = {}'.format(self.pad))
|
||||
print(' fmt = {}'.format(self.fmt))
|
||||
print(' sigbits = {}'.format(self.sigbits))
|
||||
print(' pattern = {}'.format(self.pattern))
|
||||
print(' exposure = {}'.format(self.exposure))
|
||||
print(' againQ8 = {}'.format(self.againQ8))
|
||||
print(' againQ8_norm = {}'.format(self.againQ8_norm))
|
||||
print(' camName = {}'.format(self.camName))
|
||||
print(' blacklevel = {}'.format(self.blacklevel))
|
||||
print(' blacklevel_16 = {}'.format(self.blacklevel_16))
|
||||
|
||||
return 1
|
||||
|
||||
"""
|
||||
get image from raw scanline data
|
||||
"""
|
||||
def get_image(self, raw):
|
||||
self.dptr = []
|
||||
"""
|
||||
check if data is 10 or 12 bits
|
||||
"""
|
||||
if self.sigbits == 10:
|
||||
"""
|
||||
calc length of scanline
|
||||
"""
|
||||
lin_len = ((((((self.w+self.pad+3)>>2)) * 5)+31)>>5) * 32
|
||||
"""
|
||||
stack scan lines into matrix
|
||||
"""
|
||||
raw = np.array(raw).reshape(-1, lin_len).astype(np.int64)[:self.h, ...]
|
||||
"""
|
||||
separate 5 bits in each package, stopping when w is satisfied
|
||||
"""
|
||||
ba0 = raw[..., 0:5*((self.w+3)>>2):5]
|
||||
ba1 = raw[..., 1:5*((self.w+3)>>2):5]
|
||||
ba2 = raw[..., 2:5*((self.w+3)>>2):5]
|
||||
ba3 = raw[..., 3:5*((self.w+3)>>2):5]
|
||||
ba4 = raw[..., 4:5*((self.w+3)>>2):5]
|
||||
"""
|
||||
assemble 10 bit numbers
|
||||
"""
|
||||
ch0 = np.left_shift((np.left_shift(ba0, 2) + (ba4 % 4)), 6)
|
||||
ch1 = np.left_shift((np.left_shift(ba1, 2) + (np.right_shift(ba4, 2) % 4)), 6)
|
||||
ch2 = np.left_shift((np.left_shift(ba2, 2) + (np.right_shift(ba4, 4) % 4)), 6)
|
||||
ch3 = np.left_shift((np.left_shift(ba3, 2) + (np.right_shift(ba4, 6) % 4)), 6)
|
||||
"""
|
||||
interleave bits
|
||||
"""
|
||||
mat = np.empty((self.h, self.w), dtype=ch0.dtype)
|
||||
|
||||
mat[..., 0::4] = ch0
|
||||
mat[..., 1::4] = ch1
|
||||
mat[..., 2::4] = ch2
|
||||
mat[..., 3::4] = ch3
|
||||
|
||||
"""
|
||||
There is som eleaking memory somewhere in the code. This code here
|
||||
seemed to make things good enough that the code would run for
|
||||
reasonable numbers of images, however this is techincally just a
|
||||
workaround. (sorry)
|
||||
"""
|
||||
ba0, ba1, ba2, ba3, ba4 = None, None, None, None, None
|
||||
del ba0, ba1, ba2, ba3, ba4
|
||||
ch0, ch1, ch2, ch3 = None, None, None, None
|
||||
del ch0, ch1, ch2, ch3
|
||||
|
||||
"""
|
||||
same as before but 12 bit case
|
||||
"""
|
||||
elif self.sigbits == 12:
|
||||
lin_len = ((((((self.w+self.pad+1)>>1)) * 3)+31)>>5) * 32
|
||||
raw = np.array(raw).reshape(-1, lin_len).astype(np.int64)[:self.h, ...]
|
||||
ba0 = raw[..., 0:3*((self.w+1)>>1):3]
|
||||
ba1 = raw[..., 1:3*((self.w+1)>>1):3]
|
||||
ba2 = raw[..., 2:3*((self.w+1)>>1):3]
|
||||
ch0 = np.left_shift((np.left_shift(ba0, 4) + ba2 % 16), 4)
|
||||
ch1 = np.left_shift((np.left_shift(ba1, 4) + (np.right_shift(ba2, 4)) % 16), 4)
|
||||
mat = np.empty((self.h, self.w), dtype=ch0.dtype)
|
||||
mat[..., 0::2] = ch0
|
||||
mat[..., 1::2] = ch1
|
||||
|
||||
else:
|
||||
"""
|
||||
data is neither 10 nor 12 or incorrect data
|
||||
"""
|
||||
print('ERROR: wrong bit format, only 10 or 12 bit supported')
|
||||
return 0
|
||||
|
||||
"""
|
||||
separate bayer channels
|
||||
"""
|
||||
c0 = mat[0::2, 0::2]
|
||||
c1 = mat[0::2, 1::2]
|
||||
c2 = mat[1::2, 0::2]
|
||||
c3 = mat[1::2, 1::2]
|
||||
self.channels = [c0, c1, c2, c3]
|
||||
return 1
|
||||
|
||||
"""
|
||||
obtain 16x16 patch centred at macbeth square centre for each channel
|
||||
"""
|
||||
def get_patches(self, cen_coords, size=16):
|
||||
"""
|
||||
obtain channel widths and heights
|
||||
"""
|
||||
ch_w, ch_h = self.w, self.h
|
||||
cen_coords = list(np.array((cen_coords[0])).astype(np.int32))
|
||||
self.cen_coords = cen_coords
|
||||
"""
|
||||
squares are ordered by stacking macbeth chart columns from
|
||||
left to right. Some useful patch indices:
|
||||
white = 3
|
||||
black = 23
|
||||
'reds' = 9, 10
|
||||
'blues' = 2, 5, 8, 20, 22
|
||||
'greens' = 6, 12, 17
|
||||
greyscale = 3, 7, 11, 15, 19, 23
|
||||
"""
|
||||
all_patches = []
|
||||
for ch in self.channels:
|
||||
ch_patches = []
|
||||
for cen in cen_coords:
|
||||
'''
|
||||
macbeth centre is placed at top left of central 2x2 patch
|
||||
to account for rounding
|
||||
Patch pixels are sorted by pixel brightness so spatial
|
||||
information is lost.
|
||||
'''
|
||||
patch = ch[cen[1]-7:cen[1]+9, cen[0]-7:cen[0]+9].flatten()
|
||||
patch.sort()
|
||||
if patch[-5] == (2**self.sigbits-1)*2**(16-self.sigbits):
|
||||
self.saturated = True
|
||||
ch_patches.append(patch)
|
||||
# print('\nNew Patch\n')
|
||||
all_patches.append(ch_patches)
|
||||
# print('\n\nNew Channel\n\n')
|
||||
self.patches = all_patches
|
||||
return 1
|
||||
|
||||
|
||||
def brcm_load_image(Cam, im_str):
|
||||
"""
|
||||
Load image where raw data and metadata is in the BRCM format
|
||||
"""
|
||||
try:
|
||||
"""
|
||||
create byte array
|
||||
"""
|
||||
with open(im_str, 'rb') as image:
|
||||
f = image.read()
|
||||
b = bytearray(f)
|
||||
"""
|
||||
return error if incorrect image address
|
||||
"""
|
||||
except FileNotFoundError:
|
||||
print('\nERROR:\nInvalid image address')
|
||||
Cam.log += '\nWARNING: Invalid image address'
|
||||
return 0
|
||||
|
||||
"""
|
||||
return error if problem reading file
|
||||
"""
|
||||
if f is None:
|
||||
print('\nERROR:\nProblem reading file')
|
||||
Cam.log += '\nWARNING: Problem readin file'
|
||||
return 0
|
||||
|
||||
# print('\nLooking for EOI and BRCM header')
|
||||
"""
|
||||
find end of image followed by BRCM header by turning
|
||||
bytearray into hex string and string matching with regexp
|
||||
"""
|
||||
start = -1
|
||||
match = bytearray(b'\xff\xd9@BRCM')
|
||||
match_str = binascii.hexlify(match)
|
||||
b_str = binascii.hexlify(b)
|
||||
"""
|
||||
note index is divided by two to go from string to hex
|
||||
"""
|
||||
indices = [m.start()//2 for m in re.finditer(match_str, b_str)]
|
||||
# print(indices)
|
||||
try:
|
||||
start = indices[0] + 3
|
||||
except IndexError:
|
||||
print('\nERROR:\nNo Broadcom header found')
|
||||
Cam.log += '\nWARNING: No Broadcom header found!'
|
||||
return 0
|
||||
"""
|
||||
extract data after header
|
||||
"""
|
||||
# print('\nExtracting data after header')
|
||||
buf = b[start:start+32768]
|
||||
Img = Image(buf)
|
||||
Img.str = im_str
|
||||
# print('Data found successfully')
|
||||
|
||||
"""
|
||||
obtain metadata
|
||||
"""
|
||||
# print('\nReading metadata')
|
||||
Img.get_meta()
|
||||
Cam.log += '\nExposure : {} us'.format(Img.exposure)
|
||||
Cam.log += '\nNormalised gain : {}'.format(Img.againQ8_norm)
|
||||
# print('Metadata read successfully')
|
||||
|
||||
"""
|
||||
obtain raw image data
|
||||
"""
|
||||
# print('\nObtaining raw image data')
|
||||
raw = b[start+32768:]
|
||||
Img.get_image(raw)
|
||||
"""
|
||||
delete raw to stop memory errors
|
||||
"""
|
||||
raw = None
|
||||
del raw
|
||||
# print('Raw image data obtained successfully')
|
||||
|
||||
return Img
|
||||
|
||||
|
||||
def dng_load_image(Cam, im_str):
|
||||
try:
|
||||
Img = Image(None)
|
||||
|
||||
# RawPy doesn't load all the image tags that we need, so we use py3exiv2
|
||||
metadata = pyexif.ImageMetadata(im_str)
|
||||
metadata.read()
|
||||
|
||||
Img.ver = 100 # random value
|
||||
"""
|
||||
The DNG and TIFF/EP specifications use different IFDs to store the raw
|
||||
image data and the Exif tags. DNG stores them in a SubIFD and in an Exif
|
||||
IFD respectively (named "SubImage1" and "Photo" by pyexiv2), while
|
||||
TIFF/EP stores them both in IFD0 (name "Image"). Both are used in "DNG"
|
||||
files, with libcamera-apps following the DNG recommendation and
|
||||
applications based on picamera2 following TIFF/EP.
|
||||
|
||||
This code detects which tags are being used, and therefore extracts the
|
||||
correct values.
|
||||
"""
|
||||
try:
|
||||
Img.w = metadata['Exif.SubImage1.ImageWidth'].value
|
||||
subimage = "SubImage1"
|
||||
photo = "Photo"
|
||||
except KeyError:
|
||||
Img.w = metadata['Exif.Image.ImageWidth'].value
|
||||
subimage = "Image"
|
||||
photo = "Image"
|
||||
Img.pad = 0
|
||||
Img.h = metadata[f'Exif.{subimage}.ImageLength'].value
|
||||
white = metadata[f'Exif.{subimage}.WhiteLevel'].value
|
||||
Img.sigbits = int(white).bit_length()
|
||||
Img.fmt = (Img.sigbits - 4) // 2
|
||||
Img.exposure = int(metadata[f'Exif.{photo}.ExposureTime'].value * 1000000)
|
||||
Img.againQ8 = metadata[f'Exif.{photo}.ISOSpeedRatings'].value * 256 / 100
|
||||
Img.againQ8_norm = Img.againQ8 / 256
|
||||
Img.camName = metadata['Exif.Image.Model'].value
|
||||
Img.blacklevel = int(metadata[f'Exif.{subimage}.BlackLevel'].value[0])
|
||||
Img.blacklevel_16 = Img.blacklevel << (16 - Img.sigbits)
|
||||
bayer_case = {
|
||||
'0 1 1 2': (0, (0, 1, 2, 3)),
|
||||
'1 2 0 1': (1, (2, 0, 3, 1)),
|
||||
'2 1 1 0': (2, (3, 2, 1, 0)),
|
||||
'1 0 2 1': (3, (1, 0, 3, 2))
|
||||
}
|
||||
cfa_pattern = metadata[f'Exif.{subimage}.CFAPattern'].value
|
||||
Img.pattern = bayer_case[cfa_pattern][0]
|
||||
Img.order = bayer_case[cfa_pattern][1]
|
||||
|
||||
# Now use RawPy tp get the raw Bayer pixels
|
||||
raw_im = raw.imread(im_str)
|
||||
raw_data = raw_im.raw_image
|
||||
shift = 16 - Img.sigbits
|
||||
c0 = np.left_shift(raw_data[0::2, 0::2].astype(np.int64), shift)
|
||||
c1 = np.left_shift(raw_data[0::2, 1::2].astype(np.int64), shift)
|
||||
c2 = np.left_shift(raw_data[1::2, 0::2].astype(np.int64), shift)
|
||||
c3 = np.left_shift(raw_data[1::2, 1::2].astype(np.int64), shift)
|
||||
Img.channels = [c0, c1, c2, c3]
|
||||
Img.rgb = raw_im.postprocess()
|
||||
|
||||
except Exception:
|
||||
print("\nERROR: failed to load DNG file", im_str)
|
||||
print("Either file does not exist or is incompatible")
|
||||
Cam.log += '\nERROR: DNG file does not exist or is incompatible'
|
||||
raise
|
||||
|
||||
return Img
|
||||
|
||||
|
||||
'''
|
||||
load image from file location and perform calibration
|
||||
check correct filetype
|
||||
|
||||
mac boolean is true if image is expected to contain macbeth chart and false
|
||||
if not (alsc images don't have macbeth charts)
|
||||
'''
|
||||
def load_image(Cam, im_str, mac_config=None, show=False, mac=True, show_meta=False):
|
||||
"""
|
||||
check image is correct filetype
|
||||
"""
|
||||
if '.jpg' in im_str or '.jpeg' in im_str or '.brcm' in im_str or '.dng' in im_str:
|
||||
if '.dng' in im_str:
|
||||
Img = dng_load_image(Cam, im_str)
|
||||
else:
|
||||
Img = brcm_load_image(Cam, im_str)
|
||||
"""
|
||||
handle errors smoothly if loading image failed
|
||||
"""
|
||||
if Img == 0:
|
||||
return 0
|
||||
if show_meta:
|
||||
Img.print_meta()
|
||||
|
||||
if mac:
|
||||
"""
|
||||
find macbeth centres, discarding images that are too dark or light
|
||||
"""
|
||||
av_chan = (np.mean(np.array(Img.channels), axis=0)/(2**16))
|
||||
av_val = np.mean(av_chan)
|
||||
# print(av_val)
|
||||
if av_val < Img.blacklevel_16/(2**16)+1/64:
|
||||
macbeth = None
|
||||
print('\nError: Image too dark!')
|
||||
Cam.log += '\nWARNING: Image too dark!'
|
||||
else:
|
||||
macbeth = find_macbeth(Cam, av_chan, mac_config)
|
||||
|
||||
"""
|
||||
if no macbeth found return error
|
||||
"""
|
||||
if macbeth is None:
|
||||
print('\nERROR: No macbeth chart found')
|
||||
return 0
|
||||
mac_cen_coords = macbeth[1]
|
||||
# print('\nMacbeth centres located successfully')
|
||||
|
||||
"""
|
||||
obtain image patches
|
||||
"""
|
||||
# print('\nObtaining image patches')
|
||||
Img.get_patches(mac_cen_coords)
|
||||
if Img.saturated:
|
||||
print('\nERROR: Macbeth patches have saturated')
|
||||
Cam.log += '\nWARNING: Macbeth patches have saturated!'
|
||||
return 0
|
||||
|
||||
"""
|
||||
clear memory
|
||||
"""
|
||||
Img.buf = None
|
||||
del Img.buf
|
||||
|
||||
# print('Image patches obtained successfully')
|
||||
|
||||
"""
|
||||
optional debug
|
||||
"""
|
||||
if show and __name__ == '__main__':
|
||||
copy = sum(Img.channels)/2**18
|
||||
copy = np.reshape(copy, (Img.h//2, Img.w//2)).astype(np.float64)
|
||||
copy, _ = reshape(copy, 800)
|
||||
represent(copy)
|
||||
|
||||
return Img
|
||||
|
||||
"""
|
||||
return error if incorrect filetype
|
||||
"""
|
||||
else:
|
||||
# print('\nERROR:\nInvalid file extension')
|
||||
return 0
|
||||
|
||||
|
||||
"""
|
||||
bytearray splice to number little endian
|
||||
"""
|
||||
def ba_to_b(b):
|
||||
total = 0
|
||||
for i in range(len(b)):
|
||||
total += 256**i * b[i]
|
||||
return total
|
||||
61
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_lux.py
Normal file
61
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_lux.py
Normal file
@@ -0,0 +1,61 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool for lux level
|
||||
|
||||
from ctt_tools import *
|
||||
|
||||
|
||||
"""
|
||||
Find lux values from metadata and calculate Y
|
||||
"""
|
||||
def lux(Cam, Img):
|
||||
shutter_speed = Img.exposure
|
||||
gain = Img.againQ8_norm
|
||||
aperture = 1
|
||||
Cam.log += '\nShutter speed = {}'.format(shutter_speed)
|
||||
Cam.log += '\nGain = {}'.format(gain)
|
||||
Cam.log += '\nAperture = {}'.format(aperture)
|
||||
patches = [Img.patches[i] for i in Img.order]
|
||||
channels = [Img.channels[i] for i in Img.order]
|
||||
return lux_calc(Cam, Img, patches, channels), shutter_speed, gain
|
||||
|
||||
|
||||
"""
|
||||
perform lux calibration on bayer channels
|
||||
"""
|
||||
def lux_calc(Cam, Img, patches, channels):
|
||||
"""
|
||||
find means color channels on grey patches
|
||||
"""
|
||||
ap_r = np.mean(patches[0][3::4])
|
||||
ap_g = (np.mean(patches[1][3::4])+np.mean(patches[2][3::4]))/2
|
||||
ap_b = np.mean(patches[3][3::4])
|
||||
Cam.log += '\nAverage channel values on grey patches:'
|
||||
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(ap_r, ap_b, ap_g)
|
||||
# print(ap_r, ap_g, ap_b)
|
||||
"""
|
||||
calculate channel gains
|
||||
"""
|
||||
gr = ap_g/ap_r
|
||||
gb = ap_g/ap_b
|
||||
Cam.log += '\nChannel gains: Red = {:.3f} Blue = {:.3f}'.format(gr, gb)
|
||||
|
||||
"""
|
||||
find means color channels on image and scale by gain
|
||||
note greens are averaged together (treated as one channel)
|
||||
"""
|
||||
a_r = np.mean(channels[0])*gr
|
||||
a_g = (np.mean(channels[1])+np.mean(channels[2]))/2
|
||||
a_b = np.mean(channels[3])*gb
|
||||
Cam.log += '\nAverage channel values over entire image scaled by channel gains:'
|
||||
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(a_r, a_b, a_g)
|
||||
# print(a_r, a_g, a_b)
|
||||
"""
|
||||
Calculate y with top row of yuv matrix
|
||||
"""
|
||||
y = 0.299*a_r + 0.587*a_g + 0.114*a_b
|
||||
Cam.log += '\nY value calculated: {}'.format(int(y))
|
||||
# print(y)
|
||||
return int(y)
|
||||
@@ -0,0 +1,757 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool Macbeth chart locator
|
||||
|
||||
from ctt_ransac import *
|
||||
from ctt_tools import *
|
||||
import warnings
|
||||
|
||||
"""
|
||||
NOTE: some custom functions have been used here to make the code more readable.
|
||||
These are defined in tools.py if they are needed for reference.
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Some inconsistencies between packages cause runtime warnings when running
|
||||
the clustering algorithm. This catches these warnings so they don't flood the
|
||||
output to the console
|
||||
"""
|
||||
def fxn():
|
||||
warnings.warn("runtime", RuntimeWarning)
|
||||
|
||||
|
||||
"""
|
||||
Define the success message
|
||||
"""
|
||||
success_msg = 'Macbeth chart located successfully'
|
||||
|
||||
def find_macbeth(Cam, img, mac_config=(0, 0)):
|
||||
small_chart, show = mac_config
|
||||
print('Locating macbeth chart')
|
||||
Cam.log += '\nLocating macbeth chart'
|
||||
"""
|
||||
catch the warnings
|
||||
"""
|
||||
warnings.simplefilter("ignore")
|
||||
fxn()
|
||||
|
||||
"""
|
||||
Reference macbeth chart is created that will be correlated with the located
|
||||
macbeth chart guess to produce a confidence value for the match.
|
||||
"""
|
||||
ref = cv2.imread(Cam.path + 'ctt_ref.pgm', flags=cv2.IMREAD_GRAYSCALE)
|
||||
ref_w = 120
|
||||
ref_h = 80
|
||||
rc1 = (0, 0)
|
||||
rc2 = (0, ref_h)
|
||||
rc3 = (ref_w, ref_h)
|
||||
rc4 = (ref_w, 0)
|
||||
ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32)
|
||||
ref_data = (ref, ref_w, ref_h, ref_corns)
|
||||
|
||||
"""
|
||||
locate macbeth chart
|
||||
"""
|
||||
cor, mac, coords, msg = get_macbeth_chart(img, ref_data)
|
||||
|
||||
# Keep a list that will include this and any brightened up versions of
|
||||
# the image for reuse.
|
||||
all_images = [img]
|
||||
|
||||
"""
|
||||
following bits of code tries to fix common problems with simple
|
||||
techniques.
|
||||
If now or at any point the best correlation is of above 0.75, then
|
||||
nothing more is tried as this is a high enough confidence to ensure
|
||||
reliable macbeth square centre placement.
|
||||
"""
|
||||
|
||||
"""
|
||||
brighten image 2x
|
||||
"""
|
||||
if cor < 0.75:
|
||||
a = 2
|
||||
img_br = cv2.convertScaleAbs(img, alpha=a, beta=0)
|
||||
all_images.append(img_br)
|
||||
cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data)
|
||||
if cor_b > cor:
|
||||
cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b
|
||||
|
||||
"""
|
||||
brighten image 4x
|
||||
"""
|
||||
if cor < 0.75:
|
||||
a = 4
|
||||
img_br = cv2.convertScaleAbs(img, alpha=a, beta=0)
|
||||
all_images.append(img_br)
|
||||
cor_b, mac_b, coords_b, msg_b = get_macbeth_chart(img_br, ref_data)
|
||||
if cor_b > cor:
|
||||
cor, mac, coords, msg = cor_b, mac_b, coords_b, msg_b
|
||||
|
||||
"""
|
||||
In case macbeth chart is too small, take a selection of the image and
|
||||
attempt to locate macbeth chart within that. The scale increment is
|
||||
root 2
|
||||
"""
|
||||
"""
|
||||
These variables will be used to transform the found coordinates at smaller
|
||||
scales back into the original. If ii is still -1 after this section that
|
||||
means it was not successful
|
||||
"""
|
||||
ii = -1
|
||||
w_best = 0
|
||||
h_best = 0
|
||||
d_best = 100
|
||||
"""
|
||||
d_best records the scale of the best match. Macbeth charts are only looked
|
||||
for at one scale increment smaller than the current best match in order to avoid
|
||||
unecessarily searching for macbeth charts at small scales.
|
||||
If a macbeth chart ha already been found then set d_best to 0
|
||||
"""
|
||||
if cor != 0:
|
||||
d_best = 0
|
||||
|
||||
"""
|
||||
scale 3/2 (approx root2)
|
||||
"""
|
||||
if cor < 0.75:
|
||||
imgs = []
|
||||
"""
|
||||
get size of image
|
||||
"""
|
||||
shape = list(img.shape[:2])
|
||||
w, h = shape
|
||||
"""
|
||||
set dimensions of the subselection and the step along each axis between
|
||||
selections
|
||||
"""
|
||||
w_sel = int(2*w/3)
|
||||
h_sel = int(2*h/3)
|
||||
w_inc = int(w/6)
|
||||
h_inc = int(h/6)
|
||||
"""
|
||||
for each subselection, look for a macbeth chart
|
||||
loop over this and any brightened up images that we made to increase the
|
||||
likelihood of success
|
||||
"""
|
||||
for img_br in all_images:
|
||||
for i in range(3):
|
||||
for j in range(3):
|
||||
w_s, h_s = i*w_inc, j*h_inc
|
||||
img_sel = img_br[w_s:w_s+w_sel, h_s:h_s+h_sel]
|
||||
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
|
||||
"""
|
||||
if the correlation is better than the best then record the
|
||||
scale and current subselection at which macbeth chart was
|
||||
found. Also record the coordinates, macbeth chart and message.
|
||||
"""
|
||||
if cor_ij > cor:
|
||||
cor = cor_ij
|
||||
mac, coords, msg = mac_ij, coords_ij, msg_ij
|
||||
ii, jj = i, j
|
||||
w_best, h_best = w_inc, h_inc
|
||||
d_best = 1
|
||||
|
||||
"""
|
||||
scale 2
|
||||
"""
|
||||
if cor < 0.75:
|
||||
imgs = []
|
||||
shape = list(img.shape[:2])
|
||||
w, h = shape
|
||||
w_sel = int(w/2)
|
||||
h_sel = int(h/2)
|
||||
w_inc = int(w/8)
|
||||
h_inc = int(h/8)
|
||||
# Again, loop over any brightened up images as well
|
||||
for img_br in all_images:
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
w_s, h_s = i*w_inc, j*h_inc
|
||||
img_sel = img_br[w_s:w_s+w_sel, h_s:h_s+h_sel]
|
||||
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
|
||||
if cor_ij > cor:
|
||||
cor = cor_ij
|
||||
mac, coords, msg = mac_ij, coords_ij, msg_ij
|
||||
ii, jj = i, j
|
||||
w_best, h_best = w_inc, h_inc
|
||||
d_best = 2
|
||||
|
||||
"""
|
||||
The following code checks for macbeth charts at even smaller scales. This
|
||||
slows the code down significantly and has therefore been omitted by default,
|
||||
however it is not unusably slow so might be useful if the macbeth chart
|
||||
is too small to be picked up to by the current subselections.
|
||||
Use this for macbeth charts with side lengths around 1/5 image dimensions
|
||||
(and smaller...?) it is, however, recommended that macbeth charts take up as
|
||||
large as possible a proportion of the image.
|
||||
"""
|
||||
|
||||
if small_chart:
|
||||
|
||||
if cor < 0.75 and d_best > 1:
|
||||
imgs = []
|
||||
shape = list(img.shape[:2])
|
||||
w, h = shape
|
||||
w_sel = int(w/3)
|
||||
h_sel = int(h/3)
|
||||
w_inc = int(w/12)
|
||||
h_inc = int(h/12)
|
||||
for i in range(9):
|
||||
for j in range(9):
|
||||
w_s, h_s = i*w_inc, j*h_inc
|
||||
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
|
||||
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
|
||||
if cor_ij > cor:
|
||||
cor = cor_ij
|
||||
mac, coords, msg = mac_ij, coords_ij, msg_ij
|
||||
ii, jj = i, j
|
||||
w_best, h_best = w_inc, h_inc
|
||||
d_best = 3
|
||||
|
||||
if cor < 0.75 and d_best > 2:
|
||||
imgs = []
|
||||
shape = list(img.shape[:2])
|
||||
w, h = shape
|
||||
w_sel = int(w/4)
|
||||
h_sel = int(h/4)
|
||||
w_inc = int(w/16)
|
||||
h_inc = int(h/16)
|
||||
for i in range(13):
|
||||
for j in range(13):
|
||||
w_s, h_s = i*w_inc, j*h_inc
|
||||
img_sel = img[w_s:w_s+w_sel, h_s:h_s+h_sel]
|
||||
cor_ij, mac_ij, coords_ij, msg_ij = get_macbeth_chart(img_sel, ref_data)
|
||||
if cor_ij > cor:
|
||||
cor = cor_ij
|
||||
mac, coords, msg = mac_ij, coords_ij, msg_ij
|
||||
ii, jj = i, j
|
||||
w_best, h_best = w_inc, h_inc
|
||||
|
||||
"""
|
||||
Transform coordinates from subselection to original image
|
||||
"""
|
||||
if ii != -1:
|
||||
for a in range(len(coords)):
|
||||
for b in range(len(coords[a][0])):
|
||||
coords[a][0][b][1] += ii*w_best
|
||||
coords[a][0][b][0] += jj*h_best
|
||||
|
||||
"""
|
||||
initialise coords_fit variable
|
||||
"""
|
||||
coords_fit = None
|
||||
# print('correlation: {}'.format(cor))
|
||||
"""
|
||||
print error or success message
|
||||
"""
|
||||
print(msg)
|
||||
Cam.log += '\n' + str(msg)
|
||||
if msg == success_msg:
|
||||
coords_fit = coords
|
||||
Cam.log += '\nMacbeth chart vertices:\n'
|
||||
Cam.log += '{}'.format(2*np.round(coords_fit[0][0]), 0)
|
||||
"""
|
||||
if correlation is lower than 0.75 there may be a risk of macbeth chart
|
||||
corners not having been located properly. It might be worth running
|
||||
with show set to true to check where the macbeth chart centres have
|
||||
been located.
|
||||
"""
|
||||
print('Confidence: {:.3f}'.format(cor))
|
||||
Cam.log += '\nConfidence: {:.3f}'.format(cor)
|
||||
if cor < 0.75:
|
||||
print('Caution: Low confidence guess!')
|
||||
Cam.log += 'WARNING: Low confidence guess!'
|
||||
# cv2.imshow('MacBeth', mac)
|
||||
# represent(mac, 'MacBeth chart')
|
||||
|
||||
"""
|
||||
extract data from coords_fit and plot on original image
|
||||
"""
|
||||
if show and coords_fit is not None:
|
||||
copy = img.copy()
|
||||
verts = coords_fit[0][0]
|
||||
cents = coords_fit[1][0]
|
||||
|
||||
"""
|
||||
draw circles at vertices of macbeth chart
|
||||
"""
|
||||
for vert in verts:
|
||||
p = tuple(np.round(vert).astype(np.int32))
|
||||
cv2.circle(copy, p, 10, 1, -1)
|
||||
"""
|
||||
draw circles at centres of squares
|
||||
"""
|
||||
for i in range(len(cents)):
|
||||
cent = cents[i]
|
||||
p = tuple(np.round(cent).astype(np.int32))
|
||||
"""
|
||||
draw black circle on white square, white circle on black square an
|
||||
grey circle everywhere else.
|
||||
"""
|
||||
if i == 3:
|
||||
cv2.circle(copy, p, 8, 0, -1)
|
||||
elif i == 23:
|
||||
cv2.circle(copy, p, 8, 1, -1)
|
||||
else:
|
||||
cv2.circle(copy, p, 8, 0.5, -1)
|
||||
copy, _ = reshape(copy, 400)
|
||||
represent(copy)
|
||||
|
||||
return(coords_fit)
|
||||
|
||||
|
||||
def get_macbeth_chart(img, ref_data):
|
||||
"""
|
||||
function returns coordinates of macbeth chart vertices and square centres,
|
||||
along with an error/success message for debugging purposes. Additionally,
|
||||
it scores the match with a confidence value.
|
||||
|
||||
Brief explanation of the macbeth chart locating algorithm:
|
||||
- Find rectangles within image
|
||||
- Take rectangles within percentage offset of median perimeter. The
|
||||
assumption is that these will be the macbeth squares
|
||||
- For each potential square, find the 24 possible macbeth centre locations
|
||||
that would produce a square in that location
|
||||
- Find clusters of potential macbeth chart centres to find the potential
|
||||
macbeth centres with the most votes, i.e. the most likely ones
|
||||
- For each potential macbeth centre, use the centres of the squares that
|
||||
voted for it to find macbeth chart corners
|
||||
- For each set of corners, transform the possible match into normalised
|
||||
space and correlate with a reference chart to evaluate the match
|
||||
- Select the highest correlation as the macbeth chart match, returning the
|
||||
correlation as the confidence score
|
||||
"""
|
||||
|
||||
"""
|
||||
get reference macbeth chart data
|
||||
"""
|
||||
(ref, ref_w, ref_h, ref_corns) = ref_data
|
||||
|
||||
"""
|
||||
the code will raise and catch a MacbethError in case of a problem, trying
|
||||
to give some likely reasons why the problem occred, hence the try/except
|
||||
"""
|
||||
try:
|
||||
"""
|
||||
obtain image, convert to grayscale and normalise
|
||||
"""
|
||||
src = img
|
||||
src, factor = reshape(src, 200)
|
||||
original = src.copy()
|
||||
a = 125/np.average(src)
|
||||
src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
|
||||
"""
|
||||
This code checks if there are seperate colour channels. In the past the
|
||||
macbeth locator ran on jpgs and this makes it robust to different
|
||||
filetypes. Note that running it on a jpg has 4x the pixels of the
|
||||
average bayer channel so coordinates must be doubled.
|
||||
|
||||
This is best done in img_load.py in the get_patches method. The
|
||||
coordinates and image width, height must be divided by two if the
|
||||
macbeth locator has been run on a demosaicked image.
|
||||
"""
|
||||
if len(src_norm.shape) == 3:
|
||||
src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY)
|
||||
else:
|
||||
src_bw = src_norm
|
||||
original_bw = src_bw.copy()
|
||||
"""
|
||||
obtain image edges
|
||||
"""
|
||||
sigma = 2
|
||||
src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
|
||||
t1, t2 = 50, 100
|
||||
edges = cv2.Canny(src_bw, t1, t2)
|
||||
"""
|
||||
dilate edges to prevent self-intersections in contours
|
||||
"""
|
||||
k_size = 2
|
||||
kernel = np.ones((k_size, k_size))
|
||||
its = 1
|
||||
edges = cv2.dilate(edges, kernel, iterations=its)
|
||||
"""
|
||||
find Contours in image
|
||||
"""
|
||||
conts, _ = cv2.findContours(edges, cv2.RETR_TREE,
|
||||
cv2.CHAIN_APPROX_NONE)
|
||||
if len(conts) == 0:
|
||||
raise MacbethError(
|
||||
'\nWARNING: No macbeth chart found!'
|
||||
'\nNo contours found in image\n'
|
||||
'Possible problems:\n'
|
||||
'- Macbeth chart is too dark or bright\n'
|
||||
'- Macbeth chart is occluded\n'
|
||||
)
|
||||
"""
|
||||
find quadrilateral contours
|
||||
"""
|
||||
epsilon = 0.07
|
||||
conts_per = []
|
||||
for i in range(len(conts)):
|
||||
per = cv2.arcLength(conts[i], True)
|
||||
poly = cv2.approxPolyDP(conts[i], epsilon*per, True)
|
||||
if len(poly) == 4 and cv2.isContourConvex(poly):
|
||||
conts_per.append((poly, per))
|
||||
|
||||
if len(conts_per) == 0:
|
||||
raise MacbethError(
|
||||
'\nWARNING: No macbeth chart found!'
|
||||
'\nNo quadrilateral contours found'
|
||||
'\nPossible problems:\n'
|
||||
'- Macbeth chart is too dark or bright\n'
|
||||
'- Macbeth chart is occluded\n'
|
||||
'- Macbeth chart is out of camera plane\n'
|
||||
)
|
||||
|
||||
"""
|
||||
sort contours by perimeter and get perimeters within percent of median
|
||||
"""
|
||||
conts_per = sorted(conts_per, key=lambda x: x[1])
|
||||
med_per = conts_per[int(len(conts_per)/2)][1]
|
||||
side = med_per/4
|
||||
perc = 0.1
|
||||
med_low, med_high = med_per*(1-perc), med_per*(1+perc)
|
||||
squares = []
|
||||
for i in conts_per:
|
||||
if med_low <= i[1] and med_high >= i[1]:
|
||||
squares.append(i[0])
|
||||
|
||||
"""
|
||||
obtain coordinates of nomralised macbeth and squares
|
||||
"""
|
||||
square_verts, mac_norm = get_square_verts(0.06)
|
||||
"""
|
||||
for each square guess, find 24 possible macbeth chart centres
|
||||
"""
|
||||
mac_mids = []
|
||||
squares_raw = []
|
||||
for i in range(len(squares)):
|
||||
square = squares[i]
|
||||
squares_raw.append(square)
|
||||
"""
|
||||
convert quads to rotated rectangles. This is required as the
|
||||
'squares' are usually quite irregular quadrilaterls, so performing
|
||||
a transform would result in exaggerated warping and inaccurate
|
||||
macbeth chart centre placement
|
||||
"""
|
||||
rect = cv2.minAreaRect(square)
|
||||
square = cv2.boxPoints(rect).astype(np.float32)
|
||||
"""
|
||||
reorder vertices to prevent 'hourglass shape'
|
||||
"""
|
||||
square = sorted(square, key=lambda x: x[0])
|
||||
square_1 = sorted(square[:2], key=lambda x: x[1])
|
||||
square_2 = sorted(square[2:], key=lambda x: -x[1])
|
||||
square = np.array(np.concatenate((square_1, square_2)), np.float32)
|
||||
square = np.reshape(square, (4, 2)).astype(np.float32)
|
||||
squares[i] = square
|
||||
"""
|
||||
find 24 possible macbeth chart centres by trasnforming normalised
|
||||
macbeth square vertices onto candidate square vertices found in image
|
||||
"""
|
||||
for j in range(len(square_verts)):
|
||||
verts = square_verts[j]
|
||||
p_mat = cv2.getPerspectiveTransform(verts, square)
|
||||
mac_guess = cv2.perspectiveTransform(mac_norm, p_mat)
|
||||
mac_guess = np.round(mac_guess).astype(np.int32)
|
||||
"""
|
||||
keep only if candidate macbeth is within image border
|
||||
(deprecated)
|
||||
"""
|
||||
in_border = True
|
||||
# for p in mac_guess[0]:
|
||||
# pptest = cv2.pointPolygonTest(
|
||||
# img_con,
|
||||
# tuple(p),
|
||||
# False
|
||||
# )
|
||||
# if pptest == -1:
|
||||
# in_border = False
|
||||
# break
|
||||
|
||||
if in_border:
|
||||
mac_mid = np.mean(mac_guess,
|
||||
axis=1)
|
||||
mac_mids.append([mac_mid, (i, j)])
|
||||
|
||||
if len(mac_mids) == 0:
|
||||
raise MacbethError(
|
||||
'\nWARNING: No macbeth chart found!'
|
||||
'\nNo possible macbeth charts found within image'
|
||||
'\nPossible problems:\n'
|
||||
'- Part of the macbeth chart is outside the image\n'
|
||||
'- Quadrilaterals in image background\n'
|
||||
)
|
||||
|
||||
"""
|
||||
reshape data
|
||||
"""
|
||||
for i in range(len(mac_mids)):
|
||||
mac_mids[i][0] = mac_mids[i][0][0]
|
||||
|
||||
"""
|
||||
find where midpoints cluster to identify most likely macbeth centres
|
||||
"""
|
||||
clustering = cluster.AgglomerativeClustering(
|
||||
n_clusters=None,
|
||||
compute_full_tree=True,
|
||||
distance_threshold=side*2
|
||||
)
|
||||
mac_mids_list = [x[0] for x in mac_mids]
|
||||
|
||||
if len(mac_mids_list) == 1:
|
||||
"""
|
||||
special case of only one valid centre found (probably not needed)
|
||||
"""
|
||||
clus_list = []
|
||||
clus_list.append([mac_mids, len(mac_mids)])
|
||||
|
||||
else:
|
||||
clustering.fit(mac_mids_list)
|
||||
# try:
|
||||
# clustering.fit(mac_mids_list)
|
||||
# except RuntimeWarning as error:
|
||||
# return(0, None, None, error)
|
||||
|
||||
"""
|
||||
create list of all clusters
|
||||
"""
|
||||
clus_list = []
|
||||
if clustering.n_clusters_ > 1:
|
||||
for i in range(clustering.labels_.max()+1):
|
||||
indices = [j for j, x in enumerate(clustering.labels_) if x == i]
|
||||
clus = []
|
||||
for index in indices:
|
||||
clus.append(mac_mids[index])
|
||||
clus_list.append([clus, len(clus)])
|
||||
clus_list.sort(key=lambda x: -x[1])
|
||||
|
||||
elif clustering.n_clusters_ == 1:
|
||||
"""
|
||||
special case of only one cluster found
|
||||
"""
|
||||
# print('only 1 cluster')
|
||||
clus_list.append([mac_mids, len(mac_mids)])
|
||||
else:
|
||||
raise MacbethError(
|
||||
'\nWARNING: No macebth chart found!'
|
||||
'\nNo clusters found'
|
||||
'\nPossible problems:\n'
|
||||
'- NA\n'
|
||||
)
|
||||
|
||||
"""
|
||||
keep only clusters with enough votes
|
||||
"""
|
||||
clus_len_max = clus_list[0][1]
|
||||
clus_tol = 0.7
|
||||
for i in range(len(clus_list)):
|
||||
if clus_list[i][1] < clus_len_max * clus_tol:
|
||||
clus_list = clus_list[:i]
|
||||
break
|
||||
cent = np.mean(clus_list[i][0], axis=0)[0]
|
||||
clus_list[i].append(cent)
|
||||
|
||||
"""
|
||||
represent most popular cluster centroids
|
||||
"""
|
||||
# copy = original_bw.copy()
|
||||
# copy = cv2.cvtColor(copy, cv2.COLOR_GRAY2RGB)
|
||||
# copy = cv2.resize(copy, None, fx=2, fy=2)
|
||||
# for clus in clus_list:
|
||||
# centroid = tuple(2*np.round(clus[2]).astype(np.int32))
|
||||
# cv2.circle(copy, centroid, 7, (255, 0, 0), -1)
|
||||
# cv2.circle(copy, centroid, 2, (0, 0, 255), -1)
|
||||
# represent(copy)
|
||||
|
||||
"""
|
||||
get centres of each normalised square
|
||||
"""
|
||||
reference = get_square_centres(0.06)
|
||||
|
||||
"""
|
||||
for each possible macbeth chart, transform image into
|
||||
normalised space and find correlation with reference
|
||||
"""
|
||||
max_cor = 0
|
||||
best_map = None
|
||||
best_fit = None
|
||||
best_cen_fit = None
|
||||
best_ref_mat = None
|
||||
|
||||
for clus in clus_list:
|
||||
clus = clus[0]
|
||||
sq_cents = []
|
||||
ref_cents = []
|
||||
i_list = [p[1][0] for p in clus]
|
||||
for point in clus:
|
||||
i, j = point[1]
|
||||
"""
|
||||
remove any square that voted for two different points within
|
||||
the same cluster. This causes the same point in the image to be
|
||||
mapped to two different reference square centres, resulting in
|
||||
a very distorted perspective transform since cv2.findHomography
|
||||
simply minimises error.
|
||||
This phenomenon is not particularly likely to occur due to the
|
||||
enforced distance threshold in the clustering fit but it is
|
||||
best to keep this in just in case.
|
||||
"""
|
||||
if i_list.count(i) == 1:
|
||||
square = squares_raw[i]
|
||||
sq_cent = np.mean(square, axis=0)
|
||||
ref_cent = reference[j]
|
||||
sq_cents.append(sq_cent)
|
||||
ref_cents.append(ref_cent)
|
||||
|
||||
"""
|
||||
At least four squares need to have voted for a centre in
|
||||
order for a transform to be found
|
||||
"""
|
||||
if len(sq_cents) < 4:
|
||||
raise MacbethError(
|
||||
'\nWARNING: No macbeth chart found!'
|
||||
'\nNot enough squares found'
|
||||
'\nPossible problems:\n'
|
||||
'- Macbeth chart is occluded\n'
|
||||
'- Macbeth chart is too dark or bright\n'
|
||||
)
|
||||
|
||||
ref_cents = np.array(ref_cents)
|
||||
sq_cents = np.array(sq_cents)
|
||||
"""
|
||||
find best fit transform from normalised centres to image
|
||||
"""
|
||||
h_mat, mask = cv2.findHomography(ref_cents, sq_cents)
|
||||
if 'None' in str(type(h_mat)):
|
||||
raise MacbethError(
|
||||
'\nERROR\n'
|
||||
)
|
||||
|
||||
"""
|
||||
transform normalised corners and centres into image space
|
||||
"""
|
||||
mac_fit = cv2.perspectiveTransform(mac_norm, h_mat)
|
||||
mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat)
|
||||
"""
|
||||
transform located corners into reference space
|
||||
"""
|
||||
ref_mat = cv2.getPerspectiveTransform(
|
||||
mac_fit,
|
||||
np.array([ref_corns])
|
||||
)
|
||||
map_to_ref = cv2.warpPerspective(
|
||||
original_bw, ref_mat,
|
||||
(ref_w, ref_h)
|
||||
)
|
||||
"""
|
||||
normalise brigthness
|
||||
"""
|
||||
a = 125/np.average(map_to_ref)
|
||||
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
|
||||
"""
|
||||
find correlation with bw reference macbeth
|
||||
"""
|
||||
cor = correlate(map_to_ref, ref)
|
||||
"""
|
||||
keep only if best correlation
|
||||
"""
|
||||
if cor > max_cor:
|
||||
max_cor = cor
|
||||
best_map = map_to_ref
|
||||
best_fit = mac_fit
|
||||
best_cen_fit = mac_cen_fit
|
||||
best_ref_mat = ref_mat
|
||||
|
||||
"""
|
||||
rotate macbeth by pi and recorrelate in case macbeth chart is
|
||||
upside-down
|
||||
"""
|
||||
mac_fit_inv = np.array(
|
||||
([[mac_fit[0][2], mac_fit[0][3],
|
||||
mac_fit[0][0], mac_fit[0][1]]])
|
||||
)
|
||||
mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1)
|
||||
ref_mat = cv2.getPerspectiveTransform(
|
||||
mac_fit_inv,
|
||||
np.array([ref_corns])
|
||||
)
|
||||
map_to_ref = cv2.warpPerspective(
|
||||
original_bw, ref_mat,
|
||||
(ref_w, ref_h)
|
||||
)
|
||||
a = 125/np.average(map_to_ref)
|
||||
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
|
||||
cor = correlate(map_to_ref, ref)
|
||||
if cor > max_cor:
|
||||
max_cor = cor
|
||||
best_map = map_to_ref
|
||||
best_fit = mac_fit_inv
|
||||
best_cen_fit = mac_cen_fit_inv
|
||||
best_ref_mat = ref_mat
|
||||
|
||||
"""
|
||||
Check best match is above threshold
|
||||
"""
|
||||
cor_thresh = 0.6
|
||||
if max_cor < cor_thresh:
|
||||
raise MacbethError(
|
||||
'\nWARNING: Correlation too low'
|
||||
'\nPossible problems:\n'
|
||||
'- Bad lighting conditions\n'
|
||||
'- Macbeth chart is occluded\n'
|
||||
'- Background is too noisy\n'
|
||||
'- Macbeth chart is out of camera plane\n'
|
||||
)
|
||||
"""
|
||||
Following code is mostly representation for debugging purposes
|
||||
"""
|
||||
|
||||
"""
|
||||
draw macbeth corners and centres on image
|
||||
"""
|
||||
copy = original.copy()
|
||||
copy = cv2.resize(original, None, fx=2, fy=2)
|
||||
# print('correlation = {}'.format(round(max_cor, 2)))
|
||||
for point in best_fit[0]:
|
||||
point = np.array(point, np.float32)
|
||||
point = tuple(2*np.round(point).astype(np.int32))
|
||||
cv2.circle(copy, point, 4, (255, 0, 0), -1)
|
||||
for point in best_cen_fit[0]:
|
||||
point = np.array(point, np.float32)
|
||||
point = tuple(2*np.round(point).astype(np.int32))
|
||||
cv2.circle(copy, point, 4, (0, 0, 255), -1)
|
||||
copy = copy.copy()
|
||||
cv2.circle(copy, point, 4, (0, 0, 255), -1)
|
||||
|
||||
"""
|
||||
represent coloured macbeth in reference space
|
||||
"""
|
||||
best_map_col = cv2.warpPerspective(
|
||||
original, best_ref_mat, (ref_w, ref_h)
|
||||
)
|
||||
best_map_col = cv2.resize(
|
||||
best_map_col, None, fx=4, fy=4
|
||||
)
|
||||
a = 125/np.average(best_map_col)
|
||||
best_map_col_norm = cv2.convertScaleAbs(
|
||||
best_map_col, alpha=a, beta=0
|
||||
)
|
||||
# cv2.imshow('Macbeth', best_map_col)
|
||||
# represent(copy)
|
||||
|
||||
"""
|
||||
rescale coordinates to original image size
|
||||
"""
|
||||
fit_coords = (best_fit/factor, best_cen_fit/factor)
|
||||
|
||||
return(max_cor, best_map_col_norm, fit_coords, success_msg)
|
||||
|
||||
"""
|
||||
catch macbeth errors and continue with code
|
||||
"""
|
||||
except MacbethError as error:
|
||||
return(0, None, None, error)
|
||||
123
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_noise.py
Normal file
123
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_noise.py
Normal file
@@ -0,0 +1,123 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool noise calibration
|
||||
|
||||
from ctt_image_load import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
"""
|
||||
Find noise standard deviation and fit to model:
|
||||
|
||||
noise std = a + b*sqrt(pixel mean)
|
||||
"""
|
||||
def noise(Cam, Img, plot):
|
||||
Cam.log += '\nProcessing image: {}'.format(Img.name)
|
||||
stds = []
|
||||
means = []
|
||||
"""
|
||||
iterate through macbeth square patches
|
||||
"""
|
||||
for ch_patches in Img.patches:
|
||||
for patch in ch_patches:
|
||||
"""
|
||||
renormalise patch
|
||||
"""
|
||||
patch = np.array(patch)
|
||||
patch = (patch-Img.blacklevel_16)/Img.againQ8_norm
|
||||
std = np.std(patch)
|
||||
mean = np.mean(patch)
|
||||
stds.append(std)
|
||||
means.append(mean)
|
||||
|
||||
"""
|
||||
clean data and ensure all means are above 0
|
||||
"""
|
||||
stds = np.array(stds)
|
||||
means = np.array(means)
|
||||
means = np.clip(np.array(means), 0, None)
|
||||
sq_means = np.sqrt(means)
|
||||
|
||||
"""
|
||||
least squares fit model
|
||||
"""
|
||||
fit = np.polyfit(sq_means, stds, 1)
|
||||
Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16)
|
||||
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||
"""
|
||||
remove any values further than std from the fit
|
||||
|
||||
anomalies most likely caused by:
|
||||
> ucharacteristically noisy white patch
|
||||
> saturation in the white patch
|
||||
"""
|
||||
fit_score = np.abs(stds - fit[0]*sq_means - fit[1])
|
||||
fit_std = np.std(stds)
|
||||
fit_score_norm = fit_score - fit_std
|
||||
anom_ind = np.where(fit_score_norm > 1)
|
||||
fit_score_norm.sort()
|
||||
sq_means_clean = np.delete(sq_means, anom_ind)
|
||||
stds_clean = np.delete(stds, anom_ind)
|
||||
removed = len(stds) - len(stds_clean)
|
||||
if removed != 0:
|
||||
Cam.log += '\nIdentified and removed {} anomalies.'.format(removed)
|
||||
Cam.log += '\nRecalculating fit'
|
||||
"""
|
||||
recalculate fit with outliers removed
|
||||
"""
|
||||
fit = np.polyfit(sq_means_clean, stds_clean, 1)
|
||||
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||
|
||||
"""
|
||||
if fit const is < 0 then force through 0 by
|
||||
dividing by sq_means and fitting poly order 0
|
||||
"""
|
||||
corrected = 0
|
||||
if fit[1] < 0:
|
||||
corrected = 1
|
||||
ones = np.ones(len(means))
|
||||
y_data = stds/sq_means
|
||||
fit2 = np.polyfit(ones, y_data, 0)
|
||||
Cam.log += '\nOffset below zero. Fit recalculated with zero offset'
|
||||
Cam.log += '\nNoise profile: offset = 0'
|
||||
Cam.log += ' slope = {:.3f}'.format(fit2[0])
|
||||
# print('new fit')
|
||||
# print(fit2)
|
||||
|
||||
"""
|
||||
plot fit for debug
|
||||
"""
|
||||
if plot:
|
||||
x = np.arange(sq_means.max()//0.88)
|
||||
fit_plot = x*fit[0] + fit[1]
|
||||
plt.scatter(sq_means, stds, label='data', color='blue')
|
||||
plt.scatter(sq_means[anom_ind], stds[anom_ind], color='orange', label='anomalies')
|
||||
plt.plot(x, fit_plot, label='fit', color='red', ls=':')
|
||||
if fit[1] < 0:
|
||||
fit_plot_2 = x*fit2[0]
|
||||
plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--')
|
||||
plt.plot(0, 0)
|
||||
plt.title('Noise Plot\nImg: {}'.format(Img.str))
|
||||
plt.legend(loc='upper left')
|
||||
plt.xlabel('Sqrt Pixel Value')
|
||||
plt.ylabel('Noise Standard Deviation')
|
||||
plt.grid()
|
||||
plt.show()
|
||||
"""
|
||||
End of plotting code
|
||||
"""
|
||||
|
||||
"""
|
||||
format output to include forced 0 constant
|
||||
"""
|
||||
Cam.log += '\n'
|
||||
if corrected:
|
||||
fit = [fit2[0], 0]
|
||||
return fit
|
||||
|
||||
else:
|
||||
return fit
|
||||
805
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_pisp.py
Executable file
805
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_pisp.py
Executable file
@@ -0,0 +1,805 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# ctt_pisp.py - camera tuning tool data for PiSP platforms
|
||||
|
||||
|
||||
json_template = {
|
||||
"rpi.black_level": {
|
||||
"black_level": 4096
|
||||
},
|
||||
"rpi.lux": {
|
||||
"reference_shutter_speed": 10000,
|
||||
"reference_gain": 1,
|
||||
"reference_aperture": 1.0
|
||||
},
|
||||
"rpi.dpc": {
|
||||
"strength": 1
|
||||
},
|
||||
"rpi.noise": {
|
||||
},
|
||||
"rpi.geq": {
|
||||
},
|
||||
"rpi.denoise":
|
||||
{
|
||||
"normal":
|
||||
{
|
||||
"sdn":
|
||||
{
|
||||
"deviation": 1.6,
|
||||
"strength": 0.5,
|
||||
"deviation2": 3.2,
|
||||
"deviation_no_tdn": 3.2,
|
||||
"strength_no_tdn": 0.75
|
||||
},
|
||||
"cdn":
|
||||
{
|
||||
"deviation": 200,
|
||||
"strength": 0.3
|
||||
},
|
||||
"tdn":
|
||||
{
|
||||
"deviation": 0.8,
|
||||
"threshold": 0.05
|
||||
}
|
||||
},
|
||||
"hdr":
|
||||
{
|
||||
"sdn":
|
||||
{
|
||||
"deviation": 1.6,
|
||||
"strength": 0.5,
|
||||
"deviation2": 3.2,
|
||||
"deviation_no_tdn": 3.2,
|
||||
"strength_no_tdn": 0.75
|
||||
},
|
||||
"cdn":
|
||||
{
|
||||
"deviation": 200,
|
||||
"strength": 0.3
|
||||
},
|
||||
"tdn":
|
||||
{
|
||||
"deviation": 1.3,
|
||||
"threshold": 0.1
|
||||
}
|
||||
},
|
||||
"night":
|
||||
{
|
||||
"sdn":
|
||||
{
|
||||
"deviation": 1.6,
|
||||
"strength": 0.5,
|
||||
"deviation2": 3.2,
|
||||
"deviation_no_tdn": 3.2,
|
||||
"strength_no_tdn": 0.75
|
||||
},
|
||||
"cdn":
|
||||
{
|
||||
"deviation": 200,
|
||||
"strength": 0.3
|
||||
},
|
||||
"tdn":
|
||||
{
|
||||
"deviation": 1.3,
|
||||
"threshold": 0.1
|
||||
}
|
||||
}
|
||||
},
|
||||
"rpi.awb": {
|
||||
"priors": [
|
||||
{"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
|
||||
{"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
|
||||
{"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
|
||||
],
|
||||
"modes": {
|
||||
"auto": {"lo": 2500, "hi": 7700},
|
||||
"incandescent": {"lo": 2500, "hi": 3000},
|
||||
"tungsten": {"lo": 3000, "hi": 3500},
|
||||
"fluorescent": {"lo": 4000, "hi": 4700},
|
||||
"indoor": {"lo": 3000, "hi": 5000},
|
||||
"daylight": {"lo": 5500, "hi": 6500},
|
||||
"cloudy": {"lo": 7000, "hi": 8000}
|
||||
},
|
||||
"bayes": 1
|
||||
},
|
||||
"rpi.agc":
|
||||
{
|
||||
"channels":
|
||||
[
|
||||
{
|
||||
"comment": "Channel 0 is normal AGC",
|
||||
"metering_modes":
|
||||
{
|
||||
"centre-weighted":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
|
||||
]
|
||||
},
|
||||
"spot":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
},
|
||||
"matrix":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
||||
]
|
||||
}
|
||||
},
|
||||
"exposure_modes":
|
||||
{
|
||||
"normal":
|
||||
{
|
||||
"shutter": [ 100, 10000, 30000, 60000, 66666 ],
|
||||
"gain": [ 1.0, 1.5, 2.0, 4.0, 8.0 ]
|
||||
},
|
||||
"short":
|
||||
{
|
||||
"shutter": [ 100, 5000, 10000, 20000, 60000 ],
|
||||
"gain": [ 1.0, 1.5, 2.0, 4.0, 8.0 ]
|
||||
},
|
||||
"long":
|
||||
{
|
||||
"shutter": [ 100, 10000, 30000, 60000, 90000, 120000 ],
|
||||
"gain": [ 1.0, 1.5, 2.0, 4.0, 8.0, 12.0 ]
|
||||
}
|
||||
},
|
||||
"constraint_modes":
|
||||
{
|
||||
"normal": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
}
|
||||
],
|
||||
"highlight": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.8,
|
||||
1000, 0.8
|
||||
]
|
||||
},
|
||||
],
|
||||
"shadows": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.0,
|
||||
"q_hi": 0.5,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.17,
|
||||
1000, 0.17
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
"y_target":
|
||||
[
|
||||
0, 0.16,
|
||||
1000, 0.165,
|
||||
10000, 0.17
|
||||
]
|
||||
},
|
||||
{
|
||||
"comment": "Channel 1 is the HDR short channel",
|
||||
"desaturate": 0,
|
||||
"metering_modes":
|
||||
{
|
||||
"centre-weighted":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
|
||||
]
|
||||
},
|
||||
"spot":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
},
|
||||
"matrix":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
||||
]
|
||||
}
|
||||
},
|
||||
"exposure_modes":
|
||||
{
|
||||
"normal":
|
||||
{
|
||||
"shutter": [ 100, 20000, 60000 ],
|
||||
"gain": [ 1.0, 1.0, 1.0 ]
|
||||
},
|
||||
"short":
|
||||
{
|
||||
"shutter": [ 100, 20000, 60000 ],
|
||||
"gain": [ 1.0, 1.0, 1.0 ]
|
||||
},
|
||||
"long":
|
||||
{
|
||||
"shutter": [ 100, 20000, 60000 ],
|
||||
"gain": [ 1.0, 1.0, 1.0 ]
|
||||
}
|
||||
},
|
||||
"constraint_modes":
|
||||
{
|
||||
"normal": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.7,
|
||||
1000, 0.7
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.0,
|
||||
"q_hi": 0.2,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.002,
|
||||
1000, 0.002
|
||||
]
|
||||
}
|
||||
],
|
||||
"highlight": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.7,
|
||||
1000, 0.7
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.0,
|
||||
"q_hi": 0.2,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.002,
|
||||
1000, 0.002
|
||||
]
|
||||
}
|
||||
],
|
||||
"shadows": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"q_lo": 0.95,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.7,
|
||||
1000, 0.7
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.0,
|
||||
"q_hi": 0.2,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.002,
|
||||
1000, 0.002
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
"y_target":
|
||||
[
|
||||
0, 0.16,
|
||||
1000, 0.165,
|
||||
10000, 0.17
|
||||
]
|
||||
},
|
||||
{
|
||||
"comment": "Channel 2 is the HDR long channel",
|
||||
"desaturate": 0,
|
||||
"metering_modes":
|
||||
{
|
||||
"centre-weighted":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
|
||||
]
|
||||
},
|
||||
"spot":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
},
|
||||
"matrix":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
||||
]
|
||||
}
|
||||
},
|
||||
"exposure_modes":
|
||||
{
|
||||
"normal":
|
||||
{
|
||||
"shutter": [ 100, 20000, 30000, 60000 ],
|
||||
"gain": [ 1.0, 2.0, 4.0, 8.0 ]
|
||||
},
|
||||
"short":
|
||||
{
|
||||
"shutter": [ 100, 20000, 30000, 60000 ],
|
||||
"gain": [ 1.0, 2.0, 4.0, 8.0 ]
|
||||
},
|
||||
"long":
|
||||
{
|
||||
"shutter": [ 100, 20000, 30000, 60000 ],
|
||||
"gain": [ 1.0, 2.0, 4.0, 8.0 ]
|
||||
}
|
||||
},
|
||||
"constraint_modes":
|
||||
{
|
||||
"normal": [
|
||||
],
|
||||
"highlight": [
|
||||
],
|
||||
"shadows": [
|
||||
]
|
||||
},
|
||||
"channel_constraints":
|
||||
[
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"channel": 4,
|
||||
"factor": 8
|
||||
},
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"channel": 4,
|
||||
"factor": 2
|
||||
}
|
||||
],
|
||||
"y_target":
|
||||
[
|
||||
0, 0.16,
|
||||
1000, 0.165,
|
||||
10000, 0.17
|
||||
]
|
||||
},
|
||||
{
|
||||
"comment": "Channel 3 is the night mode channel",
|
||||
"base_ev": 0.33,
|
||||
"metering_modes":
|
||||
{
|
||||
"centre-weighted":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
|
||||
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
|
||||
]
|
||||
},
|
||||
"spot":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
},
|
||||
"matrix":
|
||||
{
|
||||
"weights":
|
||||
[
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
|
||||
]
|
||||
}
|
||||
},
|
||||
"exposure_modes":
|
||||
{
|
||||
"normal":
|
||||
{
|
||||
"shutter": [ 100, 20000, 66666 ],
|
||||
"gain": [ 1.0, 2.0, 4.0 ]
|
||||
},
|
||||
"short":
|
||||
{
|
||||
"shutter": [ 100, 20000, 33333 ],
|
||||
"gain": [ 1.0, 2.0, 4.0 ]
|
||||
},
|
||||
"long":
|
||||
{
|
||||
"shutter": [ 100, 20000, 66666, 120000 ],
|
||||
"gain": [ 1.0, 2.0, 4.0, 4.0 ]
|
||||
}
|
||||
},
|
||||
"constraint_modes":
|
||||
{
|
||||
"normal": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
}
|
||||
],
|
||||
"highlight": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
},
|
||||
{
|
||||
"bound": "UPPER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.8,
|
||||
1000, 0.8
|
||||
]
|
||||
}
|
||||
],
|
||||
"shadows": [
|
||||
{
|
||||
"bound": "LOWER",
|
||||
"q_lo": 0.98,
|
||||
"q_hi": 1.0,
|
||||
"y_target":
|
||||
[
|
||||
0, 0.5,
|
||||
1000, 0.5
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
"y_target":
|
||||
[
|
||||
0, 0.16,
|
||||
1000, 0.16,
|
||||
10000, 0.17
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
"rpi.alsc": {
|
||||
'omega': 1.3,
|
||||
'n_iter': 100,
|
||||
'luminance_strength': 0.8,
|
||||
},
|
||||
"rpi.contrast": {
|
||||
"ce_enable": 1,
|
||||
"gamma_curve": [
|
||||
0, 0,
|
||||
1024, 5040,
|
||||
2048, 9338,
|
||||
3072, 12356,
|
||||
4096, 15312,
|
||||
5120, 18051,
|
||||
6144, 20790,
|
||||
7168, 23193,
|
||||
8192, 25744,
|
||||
9216, 27942,
|
||||
10240, 30035,
|
||||
11264, 32005,
|
||||
12288, 33975,
|
||||
13312, 35815,
|
||||
14336, 37600,
|
||||
15360, 39168,
|
||||
16384, 40642,
|
||||
18432, 43379,
|
||||
20480, 45749,
|
||||
22528, 47753,
|
||||
24576, 49621,
|
||||
26624, 51253,
|
||||
28672, 52698,
|
||||
30720, 53796,
|
||||
32768, 54876,
|
||||
36864, 57012,
|
||||
40960, 58656,
|
||||
45056, 59954,
|
||||
49152, 61183,
|
||||
53248, 62355,
|
||||
57344, 63419,
|
||||
61440, 64476,
|
||||
65535, 65535
|
||||
]
|
||||
},
|
||||
"rpi.ccm": {
|
||||
},
|
||||
"rpi.cac": {
|
||||
},
|
||||
"rpi.sharpen": {
|
||||
"threshold": 0.25,
|
||||
"limit": 1.0,
|
||||
"strength": 1.0
|
||||
},
|
||||
"rpi.hdr":
|
||||
{
|
||||
"Off":
|
||||
{
|
||||
"cadence": [ 0 ]
|
||||
},
|
||||
"MultiExposureUnmerged":
|
||||
{
|
||||
"cadence": [ 1, 2 ],
|
||||
"channel_map": { "short": 1, "long": 2 }
|
||||
},
|
||||
"SingleExposure":
|
||||
{
|
||||
"cadence": [1],
|
||||
"channel_map": { "short": 1 },
|
||||
"spatial_gain": 2.0,
|
||||
"tonemap_enable": 1
|
||||
},
|
||||
"MultiExposure":
|
||||
{
|
||||
"cadence": [1, 2],
|
||||
"channel_map": { "short": 1, "long": 2 },
|
||||
"stitch_enable": 1,
|
||||
"spatial_gain": 2.0,
|
||||
"tonemap_enable": 1
|
||||
},
|
||||
"Night":
|
||||
{
|
||||
"cadence": [ 3 ],
|
||||
"channel_map": { "night": 3 },
|
||||
"tonemap_enable": 1,
|
||||
"tonemap":
|
||||
[
|
||||
0, 0,
|
||||
5000, 20000,
|
||||
10000, 30000,
|
||||
20000, 47000,
|
||||
30000, 55000,
|
||||
65535, 65535
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
grid_size = (32, 32)
|
||||
130
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_pretty_print_json.py
Executable file
130
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_pretty_print_json.py
Executable file
@@ -0,0 +1,130 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright 2022 Raspberry Pi Ltd
|
||||
#
|
||||
# Script to pretty print a Raspberry Pi tuning config JSON structure in
|
||||
# version 2.0 and later formats.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import textwrap
|
||||
|
||||
|
||||
class Encoder(json.JSONEncoder):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.indentation_level = 0
|
||||
self.hard_break = 120
|
||||
self.custom_elems = {
|
||||
'weights': 15,
|
||||
'table': 16,
|
||||
'luminance_lut': 16,
|
||||
'ct_curve': 3,
|
||||
'ccm': 3,
|
||||
'lut_rx': 9,
|
||||
'lut_bx': 9,
|
||||
'lut_by': 9,
|
||||
'lut_ry': 9,
|
||||
'gamma_curve': 2,
|
||||
'y_target': 2,
|
||||
'prior': 2,
|
||||
'tonemap': 2
|
||||
}
|
||||
|
||||
def encode(self, o, node_key=None):
|
||||
if isinstance(o, (list, tuple)):
|
||||
# Check if we are a flat list of numbers.
|
||||
if not any(isinstance(el, (list, tuple, dict)) for el in o):
|
||||
s = ', '.join(json.dumps(el) for el in o)
|
||||
if node_key in self.custom_elems.keys():
|
||||
# Special case handling to specify number of elements in a row for tables, ccm, etc.
|
||||
self.indentation_level += 1
|
||||
sl = s.split(', ')
|
||||
num = self.custom_elems[node_key]
|
||||
chunk = [self.indent_str + ', '.join(sl[x:x + num]) for x in range(0, len(sl), num)]
|
||||
t = ',\n'.join(chunk)
|
||||
self.indentation_level -= 1
|
||||
output = f'\n{self.indent_str}[\n{t}\n{self.indent_str}]'
|
||||
elif len(s) > self.hard_break - len(self.indent_str):
|
||||
# Break a long list with wraps.
|
||||
self.indentation_level += 1
|
||||
t = textwrap.fill(s, self.hard_break, break_long_words=False,
|
||||
initial_indent=self.indent_str, subsequent_indent=self.indent_str)
|
||||
self.indentation_level -= 1
|
||||
output = f'\n{self.indent_str}[\n{t}\n{self.indent_str}]'
|
||||
else:
|
||||
# Smaller lists can remain on a single line.
|
||||
output = f' [ {s} ]'
|
||||
return output
|
||||
else:
|
||||
# Sub-structures in the list case.
|
||||
self.indentation_level += 1
|
||||
output = [self.indent_str + self.encode(el) for el in o]
|
||||
self.indentation_level -= 1
|
||||
output = ',\n'.join(output)
|
||||
return f' [\n{output}\n{self.indent_str}]'
|
||||
|
||||
elif isinstance(o, dict):
|
||||
self.indentation_level += 1
|
||||
output = []
|
||||
for k, v in o.items():
|
||||
if isinstance(v, dict) and len(v) == 0:
|
||||
# Empty config block special case.
|
||||
output.append(self.indent_str + f'{json.dumps(k)}: {{ }}')
|
||||
else:
|
||||
# Only linebreak if the next node is a config block.
|
||||
sep = f'\n{self.indent_str}' if isinstance(v, dict) else ''
|
||||
output.append(self.indent_str + f'{json.dumps(k)}:{sep}{self.encode(v, k)}')
|
||||
output = ',\n'.join(output)
|
||||
self.indentation_level -= 1
|
||||
return f'{{\n{output}\n{self.indent_str}}}'
|
||||
|
||||
else:
|
||||
return ' ' + json.dumps(o)
|
||||
|
||||
@property
|
||||
def indent_str(self) -> str:
|
||||
return ' ' * self.indentation_level * self.indent
|
||||
|
||||
def iterencode(self, o, **kwargs):
|
||||
return self.encode(o)
|
||||
|
||||
|
||||
def pretty_print(in_json: dict, custom_elems={}) -> str:
|
||||
|
||||
if 'version' not in in_json or \
|
||||
'target' not in in_json or \
|
||||
'algorithms' not in in_json or \
|
||||
in_json['version'] < 2.0:
|
||||
raise RuntimeError('Incompatible JSON dictionary has been provided')
|
||||
|
||||
encoder = Encoder(indent=4, sort_keys=False)
|
||||
encoder.custom_elems |= custom_elems
|
||||
return encoder.encode(in_json) #json.dumps(in_json, cls=Encoder, indent=4, sort_keys=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=
|
||||
'Prettify a version 2.0 camera tuning config JSON file.')
|
||||
parser.add_argument('-t', '--target', type=str, help='Target platform', choices=['pisp', 'vc4'], default='vc4')
|
||||
parser.add_argument('input', type=str, help='Input tuning file.')
|
||||
parser.add_argument('output', type=str, nargs='?',
|
||||
help='Output converted tuning file. If not provided, the input file will be updated in-place.',
|
||||
default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.input, 'r') as f:
|
||||
in_json = json.load(f)
|
||||
|
||||
if args.target == 'pisp':
|
||||
from ctt_pisp import grid_size
|
||||
elif args.target == 'vc4':
|
||||
from ctt_vc4 import grid_size
|
||||
|
||||
out_json = pretty_print(in_json, custom_elems={'table': grid_size[0], 'luminance_lut': grid_size[0]})
|
||||
|
||||
with open(args.output if args.output is not None else args.input, 'w') as f:
|
||||
f.write(out_json)
|
||||
71
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ransac.py
Normal file
71
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ransac.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool RANSAC selector for Macbeth chart locator
|
||||
|
||||
import numpy as np
|
||||
|
||||
scale = 2
|
||||
|
||||
|
||||
"""
|
||||
constructs normalised macbeth chart corners for ransac algorithm
|
||||
"""
|
||||
def get_square_verts(c_err=0.05, scale=scale):
|
||||
"""
|
||||
define macbeth chart corners
|
||||
"""
|
||||
b_bord_x, b_bord_y = scale*8.5, scale*13
|
||||
s_bord = 6*scale
|
||||
side = 41*scale
|
||||
x_max = side*6 + 5*s_bord + 2*b_bord_x
|
||||
y_max = side*4 + 3*s_bord + 2*b_bord_y
|
||||
c1 = (0, 0)
|
||||
c2 = (0, y_max)
|
||||
c3 = (x_max, y_max)
|
||||
c4 = (x_max, 0)
|
||||
mac_norm = np.array((c1, c2, c3, c4), np.float32)
|
||||
mac_norm = np.array([mac_norm])
|
||||
|
||||
square_verts = []
|
||||
square_0 = np.array(((0, 0), (0, side),
|
||||
(side, side), (side, 0)), np.float32)
|
||||
offset_0 = np.array((b_bord_x, b_bord_y), np.float32)
|
||||
c_off = side * c_err
|
||||
offset_cont = np.array(((c_off, c_off), (c_off, -c_off),
|
||||
(-c_off, -c_off), (-c_off, c_off)), np.float32)
|
||||
square_0 += offset_0
|
||||
square_0 += offset_cont
|
||||
"""
|
||||
define macbeth square corners
|
||||
"""
|
||||
for i in range(6):
|
||||
shift_i = np.array(((i*side, 0), (i*side, 0),
|
||||
(i*side, 0), (i*side, 0)), np.float32)
|
||||
shift_bord = np.array(((i*s_bord, 0), (i*s_bord, 0),
|
||||
(i*s_bord, 0), (i*s_bord, 0)), np.float32)
|
||||
square_i = square_0 + shift_i + shift_bord
|
||||
for j in range(4):
|
||||
shift_j = np.array(((0, j*side), (0, j*side),
|
||||
(0, j*side), (0, j*side)), np.float32)
|
||||
shift_bord = np.array(((0, j*s_bord),
|
||||
(0, j*s_bord), (0, j*s_bord),
|
||||
(0, j*s_bord)), np.float32)
|
||||
square_j = square_i + shift_j + shift_bord
|
||||
square_verts.append(square_j)
|
||||
# print('square_verts')
|
||||
# print(square_verts)
|
||||
return np.array(square_verts, np.float32), mac_norm
|
||||
|
||||
|
||||
def get_square_centres(c_err=0.05, scale=scale):
|
||||
"""
|
||||
define macbeth square centres
|
||||
"""
|
||||
verts, mac_norm = get_square_verts(c_err, scale=scale)
|
||||
|
||||
centres = np.mean(verts, axis=1)
|
||||
# print('centres')
|
||||
# print(centres)
|
||||
return np.array(centres, np.float32)
|
||||
5
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ref.pgm
Normal file
5
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_ref.pgm
Normal file
File diff suppressed because one or more lines are too long
150
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_tools.py
Normal file
150
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_tools.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# camera tuning tool miscellaneous
|
||||
|
||||
import time
|
||||
import re
|
||||
import binascii
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import imutils
|
||||
import sys
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn import cluster as cluster
|
||||
from sklearn.neighbors import NearestCentroid as get_centroids
|
||||
|
||||
"""
|
||||
This file contains some useful tools, the details of which aren't important to
|
||||
understanding of the code. They ar collated here to attempt to improve code
|
||||
readability in the main files.
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
obtain config values, unless it doesnt exist, in which case pick default
|
||||
Furthermore, it can check if the input is the correct type
|
||||
"""
|
||||
def get_config(dictt, key, default, ttype):
|
||||
try:
|
||||
val = dictt[key]
|
||||
if ttype == 'string':
|
||||
val = str(val)
|
||||
elif ttype == 'num':
|
||||
if 'int' not in str(type(val)):
|
||||
if 'float' not in str(type(val)):
|
||||
raise ValueError
|
||||
elif ttype == 'dict':
|
||||
if not isinstance(val, dict):
|
||||
raise ValueError
|
||||
elif ttype == 'list':
|
||||
if not isinstance(val, list):
|
||||
raise ValueError
|
||||
elif ttype == 'bool':
|
||||
ttype = int(bool(ttype))
|
||||
else:
|
||||
val = dictt[key]
|
||||
except (KeyError, ValueError):
|
||||
val = default
|
||||
return val
|
||||
|
||||
|
||||
"""
|
||||
argument parser
|
||||
"""
|
||||
def parse_input():
|
||||
arguments = sys.argv[1:]
|
||||
if len(arguments) % 2 != 0:
|
||||
raise ArgError('\n\nERROR! Enter value for each arguent passed.')
|
||||
params = arguments[0::2]
|
||||
vals = arguments[1::2]
|
||||
args_dict = dict(zip(params, vals))
|
||||
json_output = get_config(args_dict, '-o', None, 'string')
|
||||
directory = get_config(args_dict, '-i', None, 'string')
|
||||
config = get_config(args_dict, '-c', None, 'string')
|
||||
log_path = get_config(args_dict, '-l', None, 'string')
|
||||
target = get_config(args_dict, '-t', "vc4", 'string')
|
||||
if directory is None:
|
||||
raise ArgError('\n\nERROR! No input directory given.')
|
||||
if json_output is None:
|
||||
raise ArgError('\n\nERROR! No output json given.')
|
||||
return json_output, directory, config, log_path, target
|
||||
|
||||
|
||||
"""
|
||||
custom arg and macbeth error class
|
||||
"""
|
||||
class ArgError(Exception):
|
||||
pass
|
||||
class MacbethError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
"""
|
||||
correlation function to quantify match
|
||||
"""
|
||||
def correlate(im1, im2):
|
||||
f1 = im1.flatten()
|
||||
f2 = im2.flatten()
|
||||
cor = np.corrcoef(f1, f2)
|
||||
return cor[0][1]
|
||||
|
||||
|
||||
"""
|
||||
get list of files from directory
|
||||
"""
|
||||
def get_photos(directory='photos'):
|
||||
filename_list = []
|
||||
for filename in os.listdir(directory):
|
||||
if 'jp' in filename or '.dng' in filename:
|
||||
filename_list.append(filename)
|
||||
return filename_list
|
||||
|
||||
|
||||
"""
|
||||
display image for debugging... read at your own risk...
|
||||
"""
|
||||
def represent(img, name='image'):
|
||||
# if type(img) == tuple or type(img) == list:
|
||||
# for i in range(len(img)):
|
||||
# name = 'image {}'.format(i)
|
||||
# cv2.imshow(name, img[i])
|
||||
# else:
|
||||
# cv2.imshow(name, img)
|
||||
# cv2.waitKey(0)
|
||||
# cv2.destroyAllWindows()
|
||||
# return 0
|
||||
"""
|
||||
code above displays using opencv, but this doesn't catch users pressing 'x'
|
||||
with their mouse to close the window.... therefore matplotlib is used....
|
||||
(thanks a lot opencv)
|
||||
"""
|
||||
grid = plt.GridSpec(22, 1)
|
||||
plt.subplot(grid[:19, 0])
|
||||
plt.imshow(img, cmap='gray')
|
||||
plt.axis('off')
|
||||
plt.subplot(grid[21, 0])
|
||||
plt.title('press \'q\' to continue')
|
||||
plt.axis('off')
|
||||
plt.show()
|
||||
|
||||
# f = plt.figure()
|
||||
# ax = f.add_subplot(211)
|
||||
# ax2 = f.add_subplot(122)
|
||||
# ax.imshow(img, cmap='gray')
|
||||
# ax.axis('off')
|
||||
# ax2.set_figheight(2)
|
||||
# ax2.title('press \'q\' to continue')
|
||||
# ax2.axis('off')
|
||||
# plt.show()
|
||||
|
||||
|
||||
"""
|
||||
reshape image to fixed width without distorting
|
||||
returns image and scale factor
|
||||
"""
|
||||
def reshape(img, width):
|
||||
factor = width/img.shape[0]
|
||||
return cv2.resize(img, None, fx=factor, fy=factor), factor
|
||||
126
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_vc4.py
Executable file
126
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_vc4.py
Executable file
@@ -0,0 +1,126 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi Ltd
|
||||
#
|
||||
# ctt_vc4.py - camera tuning tool data for VC4 platforms
|
||||
|
||||
|
||||
json_template = {
|
||||
"rpi.black_level": {
|
||||
"black_level": 4096
|
||||
},
|
||||
"rpi.dpc": {
|
||||
},
|
||||
"rpi.lux": {
|
||||
"reference_shutter_speed": 10000,
|
||||
"reference_gain": 1,
|
||||
"reference_aperture": 1.0
|
||||
},
|
||||
"rpi.noise": {
|
||||
},
|
||||
"rpi.geq": {
|
||||
},
|
||||
"rpi.sdn": {
|
||||
},
|
||||
"rpi.awb": {
|
||||
"priors": [
|
||||
{"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
|
||||
{"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
|
||||
{"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
|
||||
],
|
||||
"modes": {
|
||||
"auto": {"lo": 2500, "hi": 8000},
|
||||
"incandescent": {"lo": 2500, "hi": 3000},
|
||||
"tungsten": {"lo": 3000, "hi": 3500},
|
||||
"fluorescent": {"lo": 4000, "hi": 4700},
|
||||
"indoor": {"lo": 3000, "hi": 5000},
|
||||
"daylight": {"lo": 5500, "hi": 6500},
|
||||
"cloudy": {"lo": 7000, "hi": 8600}
|
||||
},
|
||||
"bayes": 1
|
||||
},
|
||||
"rpi.agc": {
|
||||
"metering_modes": {
|
||||
"centre-weighted": {
|
||||
"weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
|
||||
},
|
||||
"spot": {
|
||||
"weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
},
|
||||
"matrix": {
|
||||
"weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
||||
}
|
||||
},
|
||||
"exposure_modes": {
|
||||
"normal": {
|
||||
"shutter": [100, 10000, 30000, 60000, 120000],
|
||||
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
|
||||
},
|
||||
"short": {
|
||||
"shutter": [100, 5000, 10000, 20000, 120000],
|
||||
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
|
||||
}
|
||||
},
|
||||
"constraint_modes": {
|
||||
"normal": [
|
||||
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}
|
||||
],
|
||||
"highlight": [
|
||||
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]},
|
||||
{"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]}
|
||||
]
|
||||
},
|
||||
"y_target": [0, 0.16, 1000, 0.165, 10000, 0.17]
|
||||
},
|
||||
"rpi.alsc": {
|
||||
'omega': 1.3,
|
||||
'n_iter': 100,
|
||||
'luminance_strength': 0.7,
|
||||
},
|
||||
"rpi.contrast": {
|
||||
"ce_enable": 1,
|
||||
"gamma_curve": [
|
||||
0, 0,
|
||||
1024, 5040,
|
||||
2048, 9338,
|
||||
3072, 12356,
|
||||
4096, 15312,
|
||||
5120, 18051,
|
||||
6144, 20790,
|
||||
7168, 23193,
|
||||
8192, 25744,
|
||||
9216, 27942,
|
||||
10240, 30035,
|
||||
11264, 32005,
|
||||
12288, 33975,
|
||||
13312, 35815,
|
||||
14336, 37600,
|
||||
15360, 39168,
|
||||
16384, 40642,
|
||||
18432, 43379,
|
||||
20480, 45749,
|
||||
22528, 47753,
|
||||
24576, 49621,
|
||||
26624, 51253,
|
||||
28672, 52698,
|
||||
30720, 53796,
|
||||
32768, 54876,
|
||||
36864, 57012,
|
||||
40960, 58656,
|
||||
45056, 59954,
|
||||
49152, 61183,
|
||||
53248, 62355,
|
||||
57344, 63419,
|
||||
61440, 64476,
|
||||
65535, 65535
|
||||
]
|
||||
},
|
||||
"rpi.ccm": {
|
||||
},
|
||||
"rpi.sharpen": {
|
||||
}
|
||||
}
|
||||
|
||||
grid_size = (16, 12)
|
||||
43
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_visualise.py
Normal file
43
spider-cam/libcamera/utils/raspberrypi/ctt/ctt_visualise.py
Normal file
@@ -0,0 +1,43 @@
|
||||
"""
|
||||
Some code that will save virtual macbeth charts that show the difference between optimised matrices and non optimised matrices
|
||||
|
||||
The function creates an image that is 1550 by 1050 pixels wide, and fills it with patches which are 200x200 pixels in size
|
||||
Each patch contains the ideal color, the color from the original matrix, and the color from the final matrix
|
||||
_________________
|
||||
| |
|
||||
| Ideal Color |
|
||||
|_______________|
|
||||
| Old | new |
|
||||
| Color | Color |
|
||||
|_______|_______|
|
||||
|
||||
Nice way of showing how the optimisation helps change the colors and the color matricies
|
||||
"""
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def visualise_macbeth_chart(macbeth_rgb, original_rgb, new_rgb, output_filename):
|
||||
image = np.zeros((1050, 1550, 3), dtype=np.uint8)
|
||||
colorindex = -1
|
||||
for y in range(6):
|
||||
for x in range(4): # Creates 6 x 4 grid of macbeth chart
|
||||
colorindex += 1
|
||||
xlocation = 50 + 250 * x # Means there is 50px of black gap between each square, more like the real macbeth chart.
|
||||
ylocation = 50 + 250 * y
|
||||
for g in range(200):
|
||||
for i in range(100):
|
||||
image[xlocation + i, ylocation + g] = macbeth_rgb[colorindex]
|
||||
xlocation = 150 + 250 * x
|
||||
ylocation = 50 + 250 * y
|
||||
for i in range(100):
|
||||
for g in range(100):
|
||||
image[xlocation + i, ylocation + g] = original_rgb[colorindex] # Smaller squares below to compare the old colors with the new ones
|
||||
xlocation = 150 + 250 * x
|
||||
ylocation = 150 + 250 * y
|
||||
for i in range(100):
|
||||
for g in range(100):
|
||||
image[xlocation + i, ylocation + g] = new_rgb[colorindex]
|
||||
|
||||
img = Image.fromarray(image, 'RGB')
|
||||
img.save(str(output_filename) + 'Generated Macbeth Chart.png')
|
||||
Reference in New Issue
Block a user