803 lines
30 KiB
Python
Executable File
803 lines
30 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# SPDX-License-Identifier: BSD-2-Clause
|
|
#
|
|
# Copyright (C) 2019, Raspberry Pi Ltd
|
|
#
|
|
# camera tuning tool
|
|
|
|
import os
|
|
import sys
|
|
from ctt_image_load import *
|
|
from ctt_cac import *
|
|
from ctt_ccm import *
|
|
from ctt_awb import *
|
|
from ctt_alsc import *
|
|
from ctt_lux import *
|
|
from ctt_noise import *
|
|
from ctt_geq import *
|
|
from ctt_pretty_print_json import pretty_print
|
|
import random
|
|
import json
|
|
import re
|
|
|
|
"""
|
|
This file houses the camera object, which is used to perform the calibrations.
|
|
The camera object houses all the calibration images as attributes in three lists:
|
|
- imgs (macbeth charts)
|
|
- imgs_alsc (alsc correction images)
|
|
- imgs_cac (cac correction images)
|
|
Various calibrations are methods of the camera object, and the output is stored
|
|
in a dictionary called self.json.
|
|
Once all the caibration has been completed, the Camera.json is written into a
|
|
json file.
|
|
The camera object initialises its json dictionary by reading from a pre-written
|
|
blank json file. This has been done to avoid reproducing the entire json file
|
|
in the code here, thereby avoiding unecessary clutter.
|
|
"""
|
|
|
|
|
|
"""
|
|
Get the colour and lux values from the strings of each inidvidual image
|
|
"""
|
|
def get_col_lux(string):
|
|
"""
|
|
Extract colour and lux values from filename
|
|
"""
|
|
col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
|
|
lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
|
|
try:
|
|
col = col.group(1)
|
|
except AttributeError:
|
|
"""
|
|
Catch error if images labelled incorrectly and pass reasonable defaults
|
|
"""
|
|
return None, None
|
|
try:
|
|
lux = lux.group(1)
|
|
except AttributeError:
|
|
"""
|
|
Catch error if images labelled incorrectly and pass reasonable defaults
|
|
Still returns colour if that has been found.
|
|
"""
|
|
return col, None
|
|
return int(col), int(lux)
|
|
|
|
|
|
"""
|
|
Camera object that is the backbone of the tuning tool.
|
|
Input is the desired path of the output json.
|
|
"""
|
|
class Camera:
|
|
def __init__(self, jfile, json):
|
|
self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
|
|
if self.path == '/':
|
|
self.path = ''
|
|
self.imgs = []
|
|
self.imgs_alsc = []
|
|
self.imgs_cac = []
|
|
self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
|
|
self.log_separator = '\n'+'-'*70+'\n'
|
|
self.jf = jfile
|
|
"""
|
|
initial json dict populated by uncalibrated values
|
|
"""
|
|
self.json = json
|
|
|
|
"""
|
|
Perform colour correction calibrations by comparing macbeth patch colours
|
|
to standard macbeth chart colours.
|
|
"""
|
|
def ccm_cal(self, do_alsc_colour, grid_size):
|
|
if 'rpi.ccm' in self.disable:
|
|
return 1
|
|
print('\nStarting CCM calibration')
|
|
self.log_new_sec('CCM')
|
|
"""
|
|
if image is greyscale then CCm makes no sense
|
|
"""
|
|
if self.grey:
|
|
print('\nERROR: Can\'t do CCM on greyscale image!')
|
|
self.log += '\nERROR: Cannot perform CCM calibration '
|
|
self.log += 'on greyscale image!\nCCM aborted!'
|
|
del self.json['rpi.ccm']
|
|
return 0
|
|
a = time.time()
|
|
"""
|
|
Check if alsc tables have been generated, if not then do ccm without
|
|
alsc
|
|
"""
|
|
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
|
|
"""
|
|
case where ALSC colour has been done, so no errors should be
|
|
expected...
|
|
"""
|
|
try:
|
|
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
|
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
|
self.log += '\nALSC tables found successfully'
|
|
except KeyError:
|
|
cal_cr_list, cal_cb_list = None, None
|
|
print('WARNING! No ALSC tables found for CCM!')
|
|
print('Performing CCM calibrations without ALSC correction...')
|
|
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
|
self.log += 'performed without ALSC correction...'
|
|
else:
|
|
"""
|
|
case where config options result in CCM done without ALSC colour tables
|
|
"""
|
|
cal_cr_list, cal_cb_list = None, None
|
|
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
|
self.log += 'performed without ALSC correction...'
|
|
|
|
"""
|
|
Do CCM calibration
|
|
"""
|
|
try:
|
|
ccms = ccm(self, cal_cr_list, cal_cb_list, grid_size)
|
|
except ArithmeticError:
|
|
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
|
|
self.log += '\nERROR: Singular matrix encountered during fit!'
|
|
self.log += '\nCCM aborted!'
|
|
return 1
|
|
"""
|
|
Write output to json
|
|
"""
|
|
self.json['rpi.ccm']['ccms'] = ccms
|
|
self.log += '\nCCM calibration written to json file'
|
|
print('Finished CCM calibration')
|
|
|
|
"""
|
|
Perform chromatic abberation correction using multiple dots images.
|
|
"""
|
|
def cac_cal(self, do_alsc_colour):
|
|
if 'rpi.cac' in self.disable:
|
|
return 1
|
|
print('\nStarting CAC calibration')
|
|
self.log_new_sec('CAC')
|
|
"""
|
|
check if cac images have been taken
|
|
"""
|
|
if len(self.imgs_cac) == 0:
|
|
print('\nError:\nNo cac calibration images found')
|
|
self.log += '\nERROR: No CAC calibration images found!'
|
|
self.log += '\nCAC calibration aborted!'
|
|
return 1
|
|
"""
|
|
if image is greyscale then CAC makes no sense
|
|
"""
|
|
if self.grey:
|
|
print('\nERROR: Can\'t do CAC on greyscale image!')
|
|
self.log += '\nERROR: Cannot perform CAC calibration '
|
|
self.log += 'on greyscale image!\nCAC aborted!'
|
|
del self.json['rpi.cac']
|
|
return 0
|
|
a = time.time()
|
|
"""
|
|
Check if camera is greyscale or color. If not greyscale, then perform cac
|
|
"""
|
|
if do_alsc_colour:
|
|
"""
|
|
Here we have a color sensor. Perform cac
|
|
"""
|
|
try:
|
|
cacs = cac(self)
|
|
except ArithmeticError:
|
|
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
|
|
self.log += '\nERROR: Singular matrix encountered during fit!'
|
|
self.log += '\nCAC aborted!'
|
|
return 1
|
|
else:
|
|
"""
|
|
case where config options suggest greyscale camera. No point in doing CAC
|
|
"""
|
|
cal_cr_list, cal_cb_list = None, None
|
|
self.log += '\nWARNING: No ALSC tables found.\nCAC calibration '
|
|
self.log += 'performed without ALSC correction...'
|
|
|
|
"""
|
|
Write output to json
|
|
"""
|
|
self.json['rpi.cac']['cac'] = cacs
|
|
self.log += '\nCAC calibration written to json file'
|
|
print('Finished CAC calibration')
|
|
|
|
|
|
"""
|
|
Auto white balance calibration produces a colour curve for
|
|
various colour temperatures, as well as providing a maximum 'wiggle room'
|
|
distance from this curve (transverse_neg/pos).
|
|
"""
|
|
def awb_cal(self, greyworld, do_alsc_colour, grid_size):
|
|
if 'rpi.awb' in self.disable:
|
|
return 1
|
|
print('\nStarting AWB calibration')
|
|
self.log_new_sec('AWB')
|
|
"""
|
|
if image is greyscale then AWB makes no sense
|
|
"""
|
|
if self.grey:
|
|
print('\nERROR: Can\'t do AWB on greyscale image!')
|
|
self.log += '\nERROR: Cannot perform AWB calibration '
|
|
self.log += 'on greyscale image!\nAWB aborted!'
|
|
del self.json['rpi.awb']
|
|
return 0
|
|
"""
|
|
optional set greyworld (e.g. for noir cameras)
|
|
"""
|
|
if greyworld:
|
|
self.json['rpi.awb']['bayes'] = 0
|
|
self.log += '\nGreyworld set'
|
|
"""
|
|
Check if alsc tables have been generated, if not then do awb without
|
|
alsc correction
|
|
"""
|
|
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
|
|
try:
|
|
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
|
|
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
|
self.log += '\nALSC tables found successfully'
|
|
except KeyError:
|
|
cal_cr_list, cal_cb_list = None, None
|
|
print('ERROR, no ALSC calibrations found for AWB')
|
|
print('Performing AWB without ALSC tables')
|
|
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
|
self.log += 'performed without ALSC correction...'
|
|
else:
|
|
cal_cr_list, cal_cb_list = None, None
|
|
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
|
self.log += 'performed without ALSC correction...'
|
|
"""
|
|
call calibration function
|
|
"""
|
|
plot = "rpi.awb" in self.plot
|
|
awb_out = awb(self, cal_cr_list, cal_cb_list, plot, grid_size)
|
|
ct_curve, transverse_neg, transverse_pos = awb_out
|
|
"""
|
|
write output to json
|
|
"""
|
|
self.json['rpi.awb']['ct_curve'] = ct_curve
|
|
self.json['rpi.awb']['sensitivity_r'] = 1.0
|
|
self.json['rpi.awb']['sensitivity_b'] = 1.0
|
|
self.json['rpi.awb']['transverse_pos'] = transverse_pos
|
|
self.json['rpi.awb']['transverse_neg'] = transverse_neg
|
|
self.log += '\nAWB calibration written to json file'
|
|
print('Finished AWB calibration')
|
|
|
|
"""
|
|
Auto lens shading correction completely mitigates the effects of lens shading for ech
|
|
colour channel seperately, and then partially corrects for vignetting.
|
|
The extent of the correction depends on the 'luminance_strength' parameter.
|
|
"""
|
|
def alsc_cal(self, luminance_strength, do_alsc_colour, grid_size, max_gain=8.0):
|
|
if 'rpi.alsc' in self.disable:
|
|
return 1
|
|
print('\nStarting ALSC calibration')
|
|
self.log_new_sec('ALSC')
|
|
"""
|
|
check if alsc images have been taken
|
|
"""
|
|
if len(self.imgs_alsc) == 0:
|
|
print('\nError:\nNo alsc calibration images found')
|
|
self.log += '\nERROR: No ALSC calibration images found!'
|
|
self.log += '\nALSC calibration aborted!'
|
|
return 1
|
|
self.json['rpi.alsc']['luminance_strength'] = luminance_strength
|
|
if self.grey and do_alsc_colour:
|
|
print('Greyscale camera so only luminance_lut calculated')
|
|
do_alsc_colour = False
|
|
self.log += '\nWARNING: ALSC colour correction cannot be done on '
|
|
self.log += 'greyscale image!\nALSC colour corrections forced off!'
|
|
"""
|
|
call calibration function
|
|
"""
|
|
plot = "rpi.alsc" in self.plot
|
|
alsc_out = alsc_all(self, do_alsc_colour, plot, grid_size, max_gain=max_gain)
|
|
cal_cr_list, cal_cb_list, luminance_lut, av_corn = alsc_out
|
|
"""
|
|
write output to json and finish if not do_alsc_colour
|
|
"""
|
|
if not do_alsc_colour:
|
|
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
|
self.json['rpi.alsc']['n_iter'] = 0
|
|
self.log += '\nALSC calibrations written to json file'
|
|
self.log += '\nNo colour calibrations performed'
|
|
print('Finished ALSC calibrations')
|
|
return 1
|
|
|
|
self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list
|
|
self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list
|
|
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
|
|
self.log += '\nALSC colour and luminance tables written to json file'
|
|
|
|
"""
|
|
The sigmas determine the strength of the adaptive algorithm, that
|
|
cleans up any lens shading that has slipped through the alsc. These are
|
|
determined by measuring a 'worst-case' difference between two alsc tables
|
|
that are adjacent in colour space. If, however, only one colour
|
|
temperature has been provided, then this difference can not be computed
|
|
as only one table is available.
|
|
To determine the sigmas you would have to estimate the error of an alsc
|
|
table with only the image it was taken on as a check. To avoid circularity,
|
|
dfault exaggerated sigmas are used, which can result in too much alsc and
|
|
is therefore not advised.
|
|
In general, just take another alsc picture at another colour temperature!
|
|
"""
|
|
|
|
if len(self.imgs_alsc) == 1:
|
|
self.json['rpi.alsc']['sigma'] = 0.005
|
|
self.json['rpi.alsc']['sigma_Cb'] = 0.005
|
|
print('\nWarning:\nOnly one alsc calibration found'
|
|
'\nStandard sigmas used for adaptive algorithm.')
|
|
print('Finished ALSC calibrations')
|
|
self.log += '\nWARNING: Only one colour temperature found in '
|
|
self.log += 'calibration images.\nStandard sigmas used for adaptive '
|
|
self.log += 'algorithm!'
|
|
return 1
|
|
|
|
"""
|
|
obtain worst-case scenario residual sigmas
|
|
"""
|
|
sigma_r, sigma_b = get_sigma(self, cal_cr_list, cal_cb_list, grid_size)
|
|
"""
|
|
write output to json
|
|
"""
|
|
self.json['rpi.alsc']['sigma'] = np.round(sigma_r, 5)
|
|
self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b, 5)
|
|
self.log += '\nCalibrated sigmas written to json file'
|
|
print('Finished ALSC calibrations')
|
|
|
|
"""
|
|
Green equalisation fixes problems caused by discrepancies in green
|
|
channels. This is done by measuring the effect on macbeth chart patches,
|
|
which ideally would have the same green values throughout.
|
|
An upper bound linear model is fit, fixing a threshold for the green
|
|
differences that are corrected.
|
|
"""
|
|
def geq_cal(self):
|
|
if 'rpi.geq' in self.disable:
|
|
return 1
|
|
print('\nStarting GEQ calibrations')
|
|
self.log_new_sec('GEQ')
|
|
"""
|
|
perform calibration
|
|
"""
|
|
plot = 'rpi.geq' in self.plot
|
|
slope, offset = geq_fit(self, plot)
|
|
"""
|
|
write output to json
|
|
"""
|
|
self.json['rpi.geq']['offset'] = offset
|
|
self.json['rpi.geq']['slope'] = slope
|
|
self.log += '\nGEQ calibrations written to json file'
|
|
print('Finished GEQ calibrations')
|
|
|
|
"""
|
|
Lux calibrations allow the lux level of a scene to be estimated by a ratio
|
|
calculation. Lux values are used in the pipeline for algorithms such as AGC
|
|
and AWB
|
|
"""
|
|
def lux_cal(self):
|
|
if 'rpi.lux' in self.disable:
|
|
return 1
|
|
print('\nStarting LUX calibrations')
|
|
self.log_new_sec('LUX')
|
|
"""
|
|
The lux calibration is done on a single image. For best effects, the
|
|
image with lux level closest to 1000 is chosen.
|
|
"""
|
|
luxes = [Img.lux for Img in self.imgs]
|
|
argmax = luxes.index(min(luxes, key=lambda l: abs(1000-l)))
|
|
Img = self.imgs[argmax]
|
|
self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux)
|
|
self.log += '\nImage used: ' + Img.name
|
|
if Img.lux < 50:
|
|
self.log += '\nWARNING: Low lux could cause inaccurate calibrations!'
|
|
"""
|
|
do calibration
|
|
"""
|
|
lux_out, shutter_speed, gain = lux(self, Img)
|
|
"""
|
|
write output to json
|
|
"""
|
|
self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed
|
|
self.json['rpi.lux']['reference_gain'] = gain
|
|
self.json['rpi.lux']['reference_lux'] = Img.lux
|
|
self.json['rpi.lux']['reference_Y'] = lux_out
|
|
self.log += '\nLUX calibrations written to json file'
|
|
print('Finished LUX calibrations')
|
|
|
|
"""
|
|
Noise alibration attempts to describe the noise profile of the sensor. The
|
|
calibration is run on macbeth images and the final output is taken as the average
|
|
"""
|
|
def noise_cal(self):
|
|
if 'rpi.noise' in self.disable:
|
|
return 1
|
|
print('\nStarting NOISE calibrations')
|
|
self.log_new_sec('NOISE')
|
|
"""
|
|
run calibration on all images and sort by slope.
|
|
"""
|
|
plot = "rpi.noise" in self.plot
|
|
noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0])
|
|
self.log += '\nFinished processing images'
|
|
"""
|
|
take the average of the interquartile
|
|
"""
|
|
length = len(noise_out)
|
|
noise_out = np.mean(noise_out[length//4:1+3*length//4], axis=0)
|
|
self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1]))
|
|
self.log += 'slope = {:.3f}'.format(noise_out[0])
|
|
"""
|
|
write to json
|
|
"""
|
|
self.json['rpi.noise']['reference_constant'] = int(noise_out[1])
|
|
self.json['rpi.noise']['reference_slope'] = round(noise_out[0], 3)
|
|
self.log += '\nNOISE calibrations written to json'
|
|
print('Finished NOISE calibrations')
|
|
|
|
"""
|
|
Removes json entries that are turned off
|
|
"""
|
|
def json_remove(self, disable):
|
|
self.log_new_sec('Disabling Options', cal=False)
|
|
if len(self.disable) == 0:
|
|
self.log += '\nNothing disabled!'
|
|
return 1
|
|
for key in disable:
|
|
try:
|
|
del self.json[key]
|
|
self.log += '\nDisabled: ' + key
|
|
except KeyError:
|
|
self.log += '\nERROR: ' + key + ' not found!'
|
|
"""
|
|
writes the json dictionary to the raw json file then make pretty
|
|
"""
|
|
def write_json(self, version=2.0, target='bcm2835', grid_size=(16, 12)):
|
|
"""
|
|
Write json dictionary to file using our version 2 format
|
|
"""
|
|
|
|
out_json = {
|
|
"version": version,
|
|
'target': target if target != 'vc4' else 'bcm2835',
|
|
"algorithms": [{name: data} for name, data in self.json.items()],
|
|
}
|
|
|
|
with open(self.jf, 'w') as f:
|
|
f.write(pretty_print(out_json,
|
|
custom_elems={'table': grid_size[0], 'luminance_lut': grid_size[0]}))
|
|
|
|
"""
|
|
add a new section to the log file
|
|
"""
|
|
def log_new_sec(self, section, cal=True):
|
|
self.log += '\n'+self.log_separator
|
|
self.log += section
|
|
if cal:
|
|
self.log += ' Calibration'
|
|
self.log += self.log_separator
|
|
|
|
"""
|
|
write script arguments to log file
|
|
"""
|
|
def log_user_input(self, json_output, directory, config, log_output):
|
|
self.log_new_sec('User Arguments', cal=False)
|
|
self.log += '\nJson file output: ' + json_output
|
|
self.log += '\nCalibration images directory: ' + directory
|
|
if config is None:
|
|
self.log += '\nNo configuration file input... using default options'
|
|
elif config is False:
|
|
self.log += '\nWARNING: Invalid configuration file path...'
|
|
self.log += ' using default options'
|
|
elif config is True:
|
|
self.log += '\nWARNING: Invalid syntax in configuration file...'
|
|
self.log += ' using default options'
|
|
else:
|
|
self.log += '\nConfiguration file: ' + config
|
|
if log_output is None:
|
|
self.log += '\nNo log file path input... using default: ctt_log.txt'
|
|
else:
|
|
self.log += '\nLog file output: ' + log_output
|
|
|
|
# if log_output
|
|
|
|
"""
|
|
write log file
|
|
"""
|
|
def write_log(self, filename):
|
|
if filename is None:
|
|
filename = 'ctt_log.txt'
|
|
self.log += '\n' + self.log_separator
|
|
with open(filename, 'w') as logfile:
|
|
logfile.write(self.log)
|
|
|
|
"""
|
|
Add all images from directory, pass into relevant list of images and
|
|
extrace lux and temperature values.
|
|
"""
|
|
def add_imgs(self, directory, mac_config, blacklevel=-1):
|
|
self.log_new_sec('Image Loading', cal=False)
|
|
img_suc_msg = 'Image loaded successfully!'
|
|
print('\n\nLoading images from '+directory)
|
|
self.log += '\nDirectory: ' + directory
|
|
"""
|
|
get list of files
|
|
"""
|
|
filename_list = get_photos(directory)
|
|
print("Files found: {}".format(len(filename_list)))
|
|
self.log += '\nFiles found: {}'.format(len(filename_list))
|
|
"""
|
|
iterate over files
|
|
"""
|
|
filename_list.sort()
|
|
for filename in filename_list:
|
|
address = directory + filename
|
|
print('\nLoading image: '+filename)
|
|
self.log += '\n\nImage: ' + filename
|
|
"""
|
|
obtain colour and lux value
|
|
"""
|
|
col, lux = get_col_lux(filename)
|
|
"""
|
|
Check if image is an alsc calibration image
|
|
"""
|
|
if 'alsc' in filename:
|
|
Img = load_image(self, address, mac=False)
|
|
self.log += '\nIdentified as an ALSC image'
|
|
"""
|
|
check if imagae data has been successfully unpacked
|
|
"""
|
|
if Img == 0:
|
|
print('\nDISCARDED')
|
|
self.log += '\nImage discarded!'
|
|
continue
|
|
"""
|
|
check that image colour temperature has been successfuly obtained
|
|
"""
|
|
elif col is not None:
|
|
"""
|
|
if successful, append to list and continue to next image
|
|
"""
|
|
Img.col = col
|
|
Img.name = filename
|
|
self.log += '\nColour temperature: {} K'.format(col)
|
|
self.imgs_alsc.append(Img)
|
|
if blacklevel != -1:
|
|
Img.blacklevel_16 = blacklevel
|
|
print(img_suc_msg)
|
|
continue
|
|
else:
|
|
print('Error! No colour temperature found!')
|
|
self.log += '\nWARNING: Error reading colour temperature'
|
|
self.log += '\nImage discarded!'
|
|
print('DISCARDED')
|
|
elif 'cac' in filename:
|
|
Img = load_image(self, address, mac=False)
|
|
self.log += '\nIdentified as an CAC image'
|
|
Img.name = filename
|
|
self.log += '\nColour temperature: {} K'.format(col)
|
|
self.imgs_cac.append(Img)
|
|
if blacklevel != -1:
|
|
Img.blacklevel_16 = blacklevel
|
|
print(img_suc_msg)
|
|
continue
|
|
else:
|
|
self.log += '\nIdentified as macbeth chart image'
|
|
"""
|
|
if image isn't an alsc correction then it must have a lux and a
|
|
colour temperature value to be useful
|
|
"""
|
|
if lux is None:
|
|
print('DISCARDED')
|
|
self.log += '\nWARNING: Error reading lux value'
|
|
self.log += '\nImage discarded!'
|
|
continue
|
|
Img = load_image(self, address, mac_config)
|
|
"""
|
|
check that image data has been successfuly unpacked
|
|
"""
|
|
if Img == 0:
|
|
print('DISCARDED')
|
|
self.log += '\nImage discarded!'
|
|
continue
|
|
else:
|
|
"""
|
|
if successful, append to list and continue to next image
|
|
"""
|
|
Img.col, Img.lux = col, lux
|
|
Img.name = filename
|
|
self.log += '\nColour temperature: {} K'.format(col)
|
|
self.log += '\nLux value: {} lx'.format(lux)
|
|
if blacklevel != -1:
|
|
Img.blacklevel_16 = blacklevel
|
|
print(img_suc_msg)
|
|
self.imgs.append(Img)
|
|
|
|
print('\nFinished loading images')
|
|
|
|
"""
|
|
Check that usable images have been found
|
|
Possible errors include:
|
|
- no macbeth chart
|
|
- incorrect filename/extension
|
|
- images from different cameras
|
|
"""
|
|
def check_imgs(self, macbeth=True):
|
|
self.log += '\n\nImages found:'
|
|
self.log += '\nMacbeth : {}'.format(len(self.imgs))
|
|
self.log += '\nALSC : {} '.format(len(self.imgs_alsc))
|
|
self.log += '\nCAC: {} '.format(len(self.imgs_cac))
|
|
self.log += '\n\nCamera metadata'
|
|
"""
|
|
check usable images found
|
|
"""
|
|
if len(self.imgs) == 0 and macbeth:
|
|
print('\nERROR: No usable macbeth chart images found')
|
|
self.log += '\nERROR: No usable macbeth chart images found'
|
|
return 0
|
|
elif len(self.imgs) == 0 and len(self.imgs_alsc) == 0 and len(self.imgs_cac) == 0:
|
|
print('\nERROR: No usable images found')
|
|
self.log += '\nERROR: No usable images found'
|
|
return 0
|
|
"""
|
|
Double check that every image has come from the same camera...
|
|
"""
|
|
all_imgs = self.imgs + self.imgs_alsc + self.imgs_cac
|
|
camNames = list(set([Img.camName for Img in all_imgs]))
|
|
patterns = list(set([Img.pattern for Img in all_imgs]))
|
|
sigbitss = list(set([Img.sigbits for Img in all_imgs]))
|
|
blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs]))
|
|
sizes = list(set([(Img.w, Img.h) for Img in all_imgs]))
|
|
|
|
if 1:
|
|
self.grey = (patterns[0] == 128)
|
|
self.blacklevel_16 = blacklevels[0]
|
|
self.log += '\nName: {}'.format(camNames[0])
|
|
self.log += '\nBayer pattern case: {}'.format(patterns[0])
|
|
if self.grey:
|
|
self.log += '\nGreyscale camera identified'
|
|
self.log += '\nSignificant bits: {}'.format(sigbitss[0])
|
|
self.log += '\nBlacklevel: {}'.format(blacklevels[0])
|
|
self.log += '\nImage size: w = {} h = {}'.format(sizes[0][0], sizes[0][1])
|
|
return 1
|
|
else:
|
|
print('\nERROR: Images from different cameras')
|
|
self.log += '\nERROR: Images are from different cameras'
|
|
return 0
|
|
|
|
|
|
def run_ctt(json_output, directory, config, log_output, json_template, grid_size, target, alsc_only=False):
|
|
"""
|
|
check input files are jsons
|
|
"""
|
|
if json_output[-5:] != '.json':
|
|
raise ArgError('\n\nError: Output must be a json file!')
|
|
if config is not None:
|
|
"""
|
|
check if config file is actually a json
|
|
"""
|
|
if config[-5:] != '.json':
|
|
raise ArgError('\n\nError: Config file must be a json file!')
|
|
"""
|
|
read configurations
|
|
"""
|
|
try:
|
|
with open(config, 'r') as config_json:
|
|
configs = json.load(config_json)
|
|
except FileNotFoundError:
|
|
configs = {}
|
|
config = False
|
|
except json.decoder.JSONDecodeError:
|
|
configs = {}
|
|
config = True
|
|
|
|
else:
|
|
configs = {}
|
|
"""
|
|
load configurations from config file, if not given then set default
|
|
"""
|
|
disable = get_config(configs, "disable", [], 'list')
|
|
plot = get_config(configs, "plot", [], 'list')
|
|
awb_d = get_config(configs, "awb", {}, 'dict')
|
|
greyworld = get_config(awb_d, "greyworld", 0, 'bool')
|
|
alsc_d = get_config(configs, "alsc", {}, 'dict')
|
|
do_alsc_colour = get_config(alsc_d, "do_alsc_colour", 1, 'bool')
|
|
luminance_strength = get_config(alsc_d, "luminance_strength", 0.8, 'num')
|
|
lsc_max_gain = get_config(alsc_d, "max_gain", 8.0, 'num')
|
|
blacklevel = get_config(configs, "blacklevel", -1, 'num')
|
|
macbeth_d = get_config(configs, "macbeth", {}, 'dict')
|
|
mac_small = get_config(macbeth_d, "small", 0, 'bool')
|
|
mac_show = get_config(macbeth_d, "show", 0, 'bool')
|
|
mac_config = (mac_small, mac_show)
|
|
print("Read lsc_max_gain", lsc_max_gain)
|
|
|
|
if blacklevel < -1 or blacklevel >= 2**16:
|
|
print('\nInvalid blacklevel, defaulted to 64')
|
|
blacklevel = -1
|
|
|
|
if luminance_strength < 0 or luminance_strength > 1:
|
|
print('\nInvalid luminance_strength strength, defaulted to 0.5')
|
|
luminance_strength = 0.5
|
|
|
|
"""
|
|
sanitise directory path
|
|
"""
|
|
if directory[-1] != '/':
|
|
directory += '/'
|
|
"""
|
|
initialise tuning tool and load images
|
|
"""
|
|
try:
|
|
Cam = Camera(json_output, json=json_template)
|
|
Cam.log_user_input(json_output, directory, config, log_output)
|
|
if alsc_only:
|
|
disable = set(Cam.json.keys()).symmetric_difference({"rpi.alsc"})
|
|
Cam.disable = disable
|
|
Cam.plot = plot
|
|
Cam.add_imgs(directory, mac_config, blacklevel)
|
|
except FileNotFoundError:
|
|
raise ArgError('\n\nError: Input image directory not found!')
|
|
|
|
"""
|
|
preform calibrations as long as check_imgs returns True
|
|
If alsc is activated then it must be done before awb and ccm since the alsc
|
|
tables are used in awb and ccm calibrations
|
|
ccm also technically does an awb but it measures this from the macbeth
|
|
chart in the image rather than using calibration data
|
|
"""
|
|
if Cam.check_imgs(macbeth=not alsc_only):
|
|
if not alsc_only:
|
|
Cam.json['rpi.black_level']['black_level'] = Cam.blacklevel_16
|
|
Cam.json_remove(disable)
|
|
print('\nSTARTING CALIBRATIONS')
|
|
Cam.alsc_cal(luminance_strength, do_alsc_colour, grid_size, max_gain=lsc_max_gain)
|
|
Cam.geq_cal()
|
|
Cam.lux_cal()
|
|
Cam.noise_cal()
|
|
if "rpi.cac" in json_template:
|
|
Cam.cac_cal(do_alsc_colour)
|
|
Cam.awb_cal(greyworld, do_alsc_colour, grid_size)
|
|
Cam.ccm_cal(do_alsc_colour, grid_size)
|
|
|
|
print('\nFINISHED CALIBRATIONS')
|
|
Cam.write_json(target=target, grid_size=grid_size)
|
|
Cam.write_log(log_output)
|
|
print('\nCalibrations written to: '+json_output)
|
|
if log_output is None:
|
|
log_output = 'ctt_log.txt'
|
|
print('Log file written to: '+log_output)
|
|
pass
|
|
else:
|
|
Cam.write_log(log_output)
|
|
|
|
if __name__ == '__main__':
|
|
"""
|
|
initialise calibration
|
|
"""
|
|
if len(sys.argv) == 1:
|
|
print("""
|
|
PiSP Tuning Tool version 1.0
|
|
Required Arguments:
|
|
'-i' : Calibration image directory.
|
|
'-o' : Name of output json file.
|
|
|
|
Optional Arguments:
|
|
'-t' : Target platform - 'pisp' or 'vc4'. Default 'vc4'
|
|
'-c' : Config file for the CTT. If not passed, default parameters used.
|
|
'-l' : Name of output log file. If not passed, 'ctt_log.txt' used.
|
|
""")
|
|
quit(0)
|
|
else:
|
|
"""
|
|
parse input arguments
|
|
"""
|
|
json_output, directory, config, log_output, target = parse_input()
|
|
if target == 'pisp':
|
|
from ctt_pisp import json_template, grid_size
|
|
elif target == 'vc4':
|
|
from ctt_vc4 import json_template, grid_size
|
|
|
|
run_ctt(json_output, directory, config, log_output, json_template, grid_size, target)
|