538 lines
20 KiB
Python

# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2024, Ideas on Board Oy
#
# Locate and extract Macbeth charts from images
# (Copied from: ctt_macbeth_locator.py)
# \todo Add debugging
import cv2
import os
from pathlib import Path
import numpy as np
import warnings
import logging
from sklearn import cluster as cluster
from .ctt_ransac import get_square_verts, get_square_centres
from .image import Image
logger = logging.getLogger(__name__)
class MacbethError(Exception):
pass
# Reshape image to fixed width without distorting returns image and scale
# factor
def reshape(img, width):
factor = width / img.shape[0]
return cv2.resize(img, None, fx=factor, fy=factor), factor
# Correlation function to quantify match
def correlate(im1, im2):
f1 = im1.flatten()
f2 = im2.flatten()
cor = np.corrcoef(f1, f2)
return cor[0][1]
# @brief Compute coordinates of macbeth chart vertices and square centres
# @return (max_cor, best_map_col_norm, fit_coords, success)
#
# Also returns an error/success message for debugging purposes. Additionally,
# it scores the match with a confidence value.
#
# Brief explanation of the macbeth chart locating algorithm:
# - Find rectangles within image
# - Take rectangles within percentage offset of median perimeter. The
# assumption is that these will be the macbeth squares
# - For each potential square, find the 24 possible macbeth centre locations
# that would produce a square in that location
# - Find clusters of potential macbeth chart centres to find the potential
# macbeth centres with the most votes, i.e. the most likely ones
# - For each potential macbeth centre, use the centres of the squares that
# voted for it to find macbeth chart corners
# - For each set of corners, transform the possible match into normalised
# space and correlate with a reference chart to evaluate the match
# - Select the highest correlation as the macbeth chart match, returning the
# correlation as the confidence score
#
# \todo Clean this up
def get_macbeth_chart(img, ref_data):
ref, ref_w, ref_h, ref_corns = ref_data
# The code will raise and catch a MacbethError in case of a problem, trying
# to give some likely reasons why the problem occured, hence the try/except
try:
# Obtain image, convert to grayscale and normalise
src = img
src, factor = reshape(src, 200)
original = src.copy()
a = 125 / np.average(src)
src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
# This code checks if there are seperate colour channels. In the past the
# macbeth locator ran on jpgs and this makes it robust to different
# filetypes. Note that running it on a jpg has 4x the pixels of the
# average bayer channel so coordinates must be doubled.
# This is best done in img_load.py in the get_patches method. The
# coordinates and image width, height must be divided by two if the
# macbeth locator has been run on a demosaicked image.
if len(src_norm.shape) == 3:
src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY)
else:
src_bw = src_norm
original_bw = src_bw.copy()
# Obtain image edges
sigma = 2
src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
t1, t2 = 50, 100
edges = cv2.Canny(src_bw, t1, t2)
# Dilate edges to prevent self-intersections in contours
k_size = 2
kernel = np.ones((k_size, k_size))
its = 1
edges = cv2.dilate(edges, kernel, iterations=its)
# Find contours in image
conts, _ = cv2.findContours(edges, cv2.RETR_TREE,
cv2.CHAIN_APPROX_NONE)
if len(conts) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo contours found in image\n'
'Possible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
)
# Find quadrilateral contours
epsilon = 0.07
conts_per = []
for i in range(len(conts)):
per = cv2.arcLength(conts[i], True)
poly = cv2.approxPolyDP(conts[i], epsilon * per, True)
if len(poly) == 4 and cv2.isContourConvex(poly):
conts_per.append((poly, per))
if len(conts_per) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo quadrilateral contours found'
'\nPossible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is out of camera plane\n'
)
# Sort contours by perimeter and get perimeters within percent of median
conts_per = sorted(conts_per, key=lambda x: x[1])
med_per = conts_per[int(len(conts_per) / 2)][1]
side = med_per / 4
perc = 0.1
med_low, med_high = med_per * (1 - perc), med_per * (1 + perc)
squares = []
for i in conts_per:
if med_low <= i[1] and med_high >= i[1]:
squares.append(i[0])
# Obtain coordinates of nomralised macbeth and squares
square_verts, mac_norm = get_square_verts(0.06)
# For each square guess, find 24 possible macbeth chart centres
mac_mids = []
squares_raw = []
for i in range(len(squares)):
square = squares[i]
squares_raw.append(square)
# Convert quads to rotated rectangles. This is required as the
# 'squares' are usually quite irregular quadrilaterls, so
# performing a transform would result in exaggerated warping and
# inaccurate macbeth chart centre placement
rect = cv2.minAreaRect(square)
square = cv2.boxPoints(rect).astype(np.float32)
# Reorder vertices to prevent 'hourglass shape'
square = sorted(square, key=lambda x: x[0])
square_1 = sorted(square[:2], key=lambda x: x[1])
square_2 = sorted(square[2:], key=lambda x: -x[1])
square = np.array(np.concatenate((square_1, square_2)), np.float32)
square = np.reshape(square, (4, 2)).astype(np.float32)
squares[i] = square
# Find 24 possible macbeth chart centres by trasnforming normalised
# macbeth square vertices onto candidate square vertices found in image
for j in range(len(square_verts)):
verts = square_verts[j]
p_mat = cv2.getPerspectiveTransform(verts, square)
mac_guess = cv2.perspectiveTransform(mac_norm, p_mat)
mac_guess = np.round(mac_guess).astype(np.int32)
mac_mid = np.mean(mac_guess, axis=1)
mac_mids.append([mac_mid, (i, j)])
if len(mac_mids) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo possible macbeth charts found within image'
'\nPossible problems:\n'
'- Part of the macbeth chart is outside the image\n'
'- Quadrilaterals in image background\n'
)
# Reshape data
for i in range(len(mac_mids)):
mac_mids[i][0] = mac_mids[i][0][0]
# Find where midpoints cluster to identify most likely macbeth centres
clustering = cluster.AgglomerativeClustering(
n_clusters=None,
compute_full_tree=True,
distance_threshold=side * 2
)
mac_mids_list = [x[0] for x in mac_mids]
if len(mac_mids_list) == 1:
# Special case of only one valid centre found (probably not needed)
clus_list = []
clus_list.append([mac_mids, len(mac_mids)])
else:
clustering.fit(mac_mids_list)
# Create list of all clusters
clus_list = []
if clustering.n_clusters_ > 1:
for i in range(clustering.labels_.max() + 1):
indices = [j for j, x in enumerate(clustering.labels_) if x == i]
clus = []
for index in indices:
clus.append(mac_mids[index])
clus_list.append([clus, len(clus)])
clus_list.sort(key=lambda x: -x[1])
elif clustering.n_clusters_ == 1:
# Special case of only one cluster found
clus_list.append([mac_mids, len(mac_mids)])
else:
raise MacbethError(
'\nWARNING: No macebth chart found!'
'\nNo clusters found'
'\nPossible problems:\n'
'- NA\n'
)
# Keep only clusters with enough votes
clus_len_max = clus_list[0][1]
clus_tol = 0.7
for i in range(len(clus_list)):
if clus_list[i][1] < clus_len_max * clus_tol:
clus_list = clus_list[:i]
break
cent = np.mean(clus_list[i][0], axis=0)[0]
clus_list[i].append(cent)
# Get centres of each normalised square
reference = get_square_centres(0.06)
# For each possible macbeth chart, transform image into
# normalised space and find correlation with reference
max_cor = 0
best_map = None
best_fit = None
best_cen_fit = None
best_ref_mat = None
for clus in clus_list:
clus = clus[0]
sq_cents = []
ref_cents = []
i_list = [p[1][0] for p in clus]
for point in clus:
i, j = point[1]
# Remove any square that voted for two different points within
# the same cluster. This causes the same point in the image to be
# mapped to two different reference square centres, resulting in
# a very distorted perspective transform since cv2.findHomography
# simply minimises error.
# This phenomenon is not particularly likely to occur due to the
# enforced distance threshold in the clustering fit but it is
# best to keep this in just in case.
if i_list.count(i) == 1:
square = squares_raw[i]
sq_cent = np.mean(square, axis=0)
ref_cent = reference[j]
sq_cents.append(sq_cent)
ref_cents.append(ref_cent)
# At least four squares need to have voted for a centre in
# order for a transform to be found
if len(sq_cents) < 4:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNot enough squares found'
'\nPossible problems:\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is too dark of bright\n'
)
ref_cents = np.array(ref_cents)
sq_cents = np.array(sq_cents)
# Find best fit transform from normalised centres to image
h_mat, mask = cv2.findHomography(ref_cents, sq_cents)
if 'None' in str(type(h_mat)):
raise MacbethError(
'\nERROR\n'
)
# Transform normalised corners and centres into image space
mac_fit = cv2.perspectiveTransform(mac_norm, h_mat)
mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat)
# Transform located corners into reference space
ref_mat = cv2.getPerspectiveTransform(
mac_fit,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
# Normalise brigthness
a = 125 / np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
# Find correlation with bw reference macbeth
cor = correlate(map_to_ref, ref)
# Keep only if best correlation
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit
best_cen_fit = mac_cen_fit
best_ref_mat = ref_mat
# Rotate macbeth by pi and recorrelate in case macbeth chart is
# upside-down
mac_fit_inv = np.array(
([[mac_fit[0][2], mac_fit[0][3],
mac_fit[0][0], mac_fit[0][1]]])
)
mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1)
ref_mat = cv2.getPerspectiveTransform(
mac_fit_inv,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
a = 125 / np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
cor = correlate(map_to_ref, ref)
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit_inv
best_cen_fit = mac_cen_fit_inv
best_ref_mat = ref_mat
# Check best match is above threshold
cor_thresh = 0.6
if max_cor < cor_thresh:
raise MacbethError(
'\nWARNING: Correlation too low'
'\nPossible problems:\n'
'- Bad lighting conditions\n'
'- Macbeth chart is occluded\n'
'- Background is too noisy\n'
'- Macbeth chart is out of camera plane\n'
)
# Represent coloured macbeth in reference space
best_map_col = cv2.warpPerspective(
original, best_ref_mat, (ref_w, ref_h)
)
best_map_col = cv2.resize(
best_map_col, None, fx=4, fy=4
)
a = 125 / np.average(best_map_col)
best_map_col_norm = cv2.convertScaleAbs(
best_map_col, alpha=a, beta=0
)
# Rescale coordinates to original image size
fit_coords = (best_fit / factor, best_cen_fit / factor)
return (max_cor, best_map_col_norm, fit_coords, True)
# Catch macbeth errors and continue with code
except MacbethError as error:
# \todo: This happens so many times in a normal run, that it shadows
# all the relevant output
# logger.warning(error)
return (0, None, None, False)
def find_macbeth(img, mac_config):
small_chart = mac_config['small']
show = mac_config['show']
# Catch the warnings
warnings.simplefilter("ignore")
warnings.warn("runtime", RuntimeWarning)
# Reference macbeth chart is created that will be correlated with the
# located macbeth chart guess to produce a confidence value for the match.
script_dir = Path(os.path.realpath(os.path.dirname(__file__)))
macbeth_ref_path = script_dir.joinpath('macbeth_ref.pgm')
ref = cv2.imread(str(macbeth_ref_path), flags=cv2.IMREAD_GRAYSCALE)
ref_w = 120
ref_h = 80
rc1 = (0, 0)
rc2 = (0, ref_h)
rc3 = (ref_w, ref_h)
rc4 = (ref_w, 0)
ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32)
ref_data = (ref, ref_w, ref_h, ref_corns)
# Locate macbeth chart
cor, mac, coords, ret = get_macbeth_chart(img, ref_data)
# Following bits of code try to fix common problems with simple techniques.
# If now or at any point the best correlation is of above 0.75, then
# nothing more is tried as this is a high enough confidence to ensure
# reliable macbeth square centre placement.
# Keep a list that will include this and any brightened up versions of
# the image for reuse.
all_images = [img]
for brightness in [2, 4]:
if cor >= 0.75:
break
img_br = cv2.convertScaleAbs(img, alpha=brightness, beta=0)
all_images.append(img_br)
cor_b, mac_b, coords_b, ret_b = get_macbeth_chart(img_br, ref_data)
if cor_b > cor:
cor, mac, coords, ret = cor_b, mac_b, coords_b, ret_b
# In case macbeth chart is too small, take a selection of the image and
# attempt to locate macbeth chart within that. The scale increment is
# root 2
# These variables will be used to transform the found coordinates at
# smaller scales back into the original. If ii is still -1 after this
# section that means it was not successful
ii = -1
w_best = 0
h_best = 0
d_best = 100
# d_best records the scale of the best match. Macbeth charts are only looked
# for at one scale increment smaller than the current best match in order to avoid
# unecessarily searching for macbeth charts at small scales.
# If a macbeth chart ha already been found then set d_best to 0
if cor != 0:
d_best = 0
for index, pair in enumerate([{'sel': 2 / 3, 'inc': 1 / 6},
{'sel': 1 / 2, 'inc': 1 / 8},
{'sel': 1 / 3, 'inc': 1 / 12},
{'sel': 1 / 4, 'inc': 1 / 16}]):
if cor >= 0.75:
break
# Check if we need to check macbeth charts at even smaller scales. This
# slows the code down significantly and has therefore been omitted by
# default, however it is not unusably slow so might be useful if the
# macbeth chart is too small to be picked up to by the current
# subselections. Use this for macbeth charts with side lengths around
# 1/5 image dimensions (and smaller...?) it is, however, recommended
# that macbeth charts take up as large as possible a proportion of the
# image.
if index >= 2 and (not small_chart or d_best <= index - 1):
break
w, h = list(img.shape[:2])
# Set dimensions of the subselection and the step along each axis
# between selections
w_sel = int(w * pair['sel'])
h_sel = int(h * pair['sel'])
w_inc = int(w * pair['inc'])
h_inc = int(h * pair['inc'])
loop = int(((1 - pair['sel']) / pair['inc']) + 1)
# For each subselection, look for a macbeth chart
for img_br in all_images:
for i in range(loop):
for j in range(loop):
w_s, h_s = i * w_inc, j * h_inc
img_sel = img_br[w_s:w_s + w_sel, h_s:h_s + h_sel]
cor_ij, mac_ij, coords_ij, ret_ij = get_macbeth_chart(img_sel, ref_data)
# If the correlation is better than the best then record the
# scale and current subselection at which macbeth chart was
# found. Also record the coordinates, macbeth chart and message.
if cor_ij > cor:
cor = cor_ij
mac, coords, ret = mac_ij, coords_ij, ret_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
d_best = index + 1
# Transform coordinates from subselection to original image
if ii != -1:
for a in range(len(coords)):
for b in range(len(coords[a][0])):
coords[a][0][b][1] += ii * w_best
coords[a][0][b][0] += jj * h_best
if not ret:
return None
coords_fit = coords
if cor < 0.75:
logger.warning(f'Low confidence {cor:.3f} for macbeth chart')
if show:
draw_macbeth_results(img, coords_fit)
return coords_fit
def locate_macbeth(image: Image, config: dict):
# Find macbeth centres
av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16))
av_val = np.mean(av_chan)
if av_val < image.blacklevel_16 / (2**16) + 1 / 64:
logger.warning(f'Image {image.path.name} too dark')
return None
macbeth = find_macbeth(av_chan, config['general']['macbeth'])
if macbeth is None:
logger.warning(f'No macbeth chart found in {image.path.name}')
return None
mac_cen_coords = macbeth[1]
if not image.get_patches(mac_cen_coords):
logger.warning(f'Macbeth patches have saturated in {image.path.name}')
return None
image.macbeth = macbeth
return macbeth