ollama4j/docs/docs/apis-extras/options-builder.md

6.8 KiB

sidebar_position
sidebar_position
1

Options Builder

This lets you build options for the ask() API.

Following are the parameters supported by Ollama:

Parameter Description Value Type Example Usage
mirostat Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) int mirostat 0
mirostat_eta Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) float mirostat_eta 0.1
mirostat_tau Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) float mirostat_tau 5.0
num_ctx Sets the size of the context window used to generate the next token. (Default: 2048) int num_ctx 4096
num_gqa The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b int num_gqa 1
num_gpu The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. int num_gpu 50
num_thread Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). int num_thread 8
repeat_last_n Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) int repeat_last_n 64
repeat_penalty Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) float repeat_penalty 1.1
temperature The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) float temperature 0.7
seed Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) int seed 42
stop Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate stop parameters in a modelfile. string stop "AI assistant:"
tfs_z Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) float tfs_z 1
num_predict Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) int num_predict 42
top_k Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) int top_k 40
top_p Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) float top_p 0.9

Link to source.

Also, see how to set those Ollama parameters using the OptionsBuilder from javadoc.

Build an empty Options object

import io.github.amithkoujalgi.ollama4j.core.utils.Options;
import io.github.amithkoujalgi.ollama4j.core.utils.OptionsBuilder;

public class Main {

    public static void main(String[] args) {

        String host = "http://localhost:11434/";

        OllamaAPI ollamaAPI = new OllamaAPI(host);

        Options options = new OptionsBuilder().build();
    }
}

Build the Options object with values

import io.github.amithkoujalgi.ollama4j.core.utils.Options;
import io.github.amithkoujalgi.ollama4j.core.utils.OptionsBuilder;

public class Main {

    public static void main(String[] args) {

        String host = "http://localhost:11434/";

        OllamaAPI ollamaAPI = new OllamaAPI(host);

        Options options =
                new OptionsBuilder()
                        .setMirostat(10)
                        .setMirostatEta(0.5f)
                        .setNumGpu(2)
                        .setTemperature(1.5f)
                        .build();
    }
}