### Ollama4j
A Java library (wrapper) for [Ollama](https://github.com/jmorganca/ollama/blob/main/docs/api.md) APIs.

#### Requirements
- Ollama (Either [natively](https://ollama.ai/download) setup or via [Docker](https://hub.docker.com/r/ollama/ollama))
- Java 8 or above
#### Install
In your Maven project, add this dependency available in
the [Central Repository](https://s01.oss.sonatype.org/#nexus-search;quick~ollama4j):
```xml
io.github.amithkoujalgi
ollama4j
1.0-SNAPSHOT
```
You might want to include the Maven repository to pull the ollama4j library from. Include this in your `pom.xml`:
```xml
ollama4j-from-ossrh
https://s01.oss.sonatype.org/content/repositories/snapshots
```
#### Build:
Build your project to resolve the dependencies:
```bash
mvn clean install
```
You can then use the Ollama Java APIs by importing `ollama4j`:
```java
import io.github.amithkoujalgi.ollama4j.core.OllamaAPI;
```
### Try out the APIs
For simplest way to get started, I prefer to use the Ollama docker setup.
Start the Ollama docker container:
```
docker run -v ~/ollama:/root/.ollama -p 11434:11434 ollama/ollama
```
#### Pull a model:
```java
public class Main {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
ollamaAPI.pullModel(OllamaModel.LLAMA2);
}
}
```
_Find the list of available models from Ollama [here](https://ollama.ai/library)._
#### Ask a question to the model with ollama4j
##### Using sync API:
```java
public class Main {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
String response = ollamaAPI.runSync(OllamaModel.LLAMA2, "Who are you?");
System.out.println(response);
}
}
```
##### Using async API:
```java
public class Main {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
OllamaAsyncResultCallback ollamaAsyncResultCallback = ollamaAPI.runAsync(OllamaModel.LLAMA2, "Who are you?");
while (true) {
if (ollamaAsyncResultCallback.isComplete()) {
System.out.println(ollamaAsyncResultCallback.getResponse());
break;
}
// introduce sleep to check for status with a time interval
// Thread.sleep(1000);
}
}
}
```
You'd then get a response from the model:
> I am LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational
> manner. I am trained on a massive dataset of text from the internet and can generate human-like responses to a wide
> range of topics and questions. I can be used to create chatbots, virtual assistants, and other applications that
> require
> natural language understanding and generation capabilities.
Find the full `Javadoc` (API specifications) [here](https://amithkoujalgi.github.io/ollama4j/).
#### Get Involved
Contributions are most welcome! Whether it's reporting a bug, proposing an enhancement, or helping with code - any sort
of contribution is much appreciated.