Compare commits

..

26 Commits

Author SHA1 Message Date
amithkoujalgi
6c93b8304a [maven-release-plugin] prepare release v1.0.41 2024-01-02 17:49:24 +00:00
Amith Koujalgi
85acf0fe78 added OptionsBuilder and support for specifying extra params for ask API 2024-01-02 23:18:17 +05:30
amithkoujalgi
fe64c6dd10 [maven-release-plugin] prepare for next development iteration 2023-12-30 20:05:10 +00:00
amithkoujalgi
b15066a204 [maven-release-plugin] prepare release v1.0.40 2023-12-30 20:05:08 +00:00
Amith Koujalgi
e2b29b6a07 added Prompt Builder 2023-12-31 01:33:59 +05:30
amithkoujalgi
7470ebe846 [maven-release-plugin] prepare for next development iteration 2023-12-30 17:42:18 +00:00
amithkoujalgi
422efa68aa [maven-release-plugin] prepare release v1.0.39 2023-12-30 17:42:17 +00:00
Amith Koujalgi
f4d8671922 updated docs 2023-12-30 23:10:50 +05:30
amithkoujalgi
70b136c9fc [maven-release-plugin] prepare for next development iteration 2023-12-30 15:53:15 +00:00
amithkoujalgi
7adb5e93c7 [maven-release-plugin] prepare release v1.0.38 2023-12-30 15:53:14 +00:00
Amith Koujalgi
a8b7117878 updated docs 2023-12-30 21:22:04 +05:30
amithkoujalgi
3bd99cd1e8 [maven-release-plugin] prepare for next development iteration 2023-12-30 08:48:46 +00:00
amithkoujalgi
1d6af26857 [maven-release-plugin] prepare release v1.0.37 2023-12-30 08:48:45 +00:00
Amith Koujalgi
14d18d731f Fixed javadoc 2023-12-30 14:17:36 +05:30
amithkoujalgi
c8d7cbbc2c [maven-release-plugin] prepare for next development iteration 2023-12-30 08:34:44 +00:00
amithkoujalgi
ef4303fbbb [maven-release-plugin] prepare release v1.0.36 2023-12-30 08:34:42 +00:00
Amith Koujalgi
2df9a9c69b Merge remote-tracking branch 'origin/main' 2023-12-30 14:03:41 +05:30
Amith Koujalgi
6bb5d9f644 Added CodeCov setup 2023-12-30 14:03:34 +05:30
amithkoujalgi
94b221248a [maven-release-plugin] prepare for next development iteration 2023-12-30 08:29:50 +00:00
amithkoujalgi
2a887f5015 [maven-release-plugin] prepare release v1.0.35 2023-12-30 08:29:49 +00:00
Amith Koujalgi
7e3dddf1bb Merge remote-tracking branch 'origin/main'
# Conflicts:
#	pom.xml
2023-12-30 13:58:38 +05:30
Amith Koujalgi
fe95a7df2a Added CodeCov setup 2023-12-30 13:56:35 +05:30
amithkoujalgi
98f6a30c6b [maven-release-plugin] prepare for next development iteration 2023-12-30 08:12:45 +00:00
amithkoujalgi
00288053bf [maven-release-plugin] prepare release v1.0.34 2023-12-30 08:12:43 +00:00
Amith Koujalgi
6a7feb98bd Added CodeCov setup 2023-12-30 13:41:33 +05:30
amithkoujalgi
770d511067 [maven-release-plugin] prepare for next development iteration 2023-12-30 06:54:50 +00:00
24 changed files with 2078 additions and 264 deletions

View File

@@ -49,6 +49,10 @@ jobs:
${{ runner.os }}-maven-
- name: Build
run: mvn -B -ntp clean install
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v3
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
- name: Publish to GitHub Packages Apache Maven
# if: >
# github.event_name != 'pull_request' &&

View File

@@ -10,4 +10,16 @@ it:
list-releases:
curl 'https://central.sonatype.com/api/internal/browse/component/versions?sortField=normalizedVersion&sortDirection=asc&page=0&size=12&filter=namespace%3Aio.github.amithkoujalgi%2Cname%3Aollama4j' \
--compressed \
--silent | jq '.components[].version'
--silent | jq '.components[].version'
build-docs:
npm i --prefix docs && npm run build --prefix docs
start-docs:
npm i --prefix docs && npm run start --prefix docs
start-cpu:
docker run -it -v ~/ollama:/root/.ollama -p 11434:11434 ollama/ollama
start-gpu:
docker run -it --gpus=all -v ~/ollama:/root/.ollama -p 11434:11434 ollama/ollama

View File

@@ -15,6 +15,8 @@ Find more details on the [website](https://amithkoujalgi.github.io/ollama4j/).
![GitHub last commit](https://img.shields.io/github/last-commit/amithkoujalgi/ollama4j?color=green)
![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Famithkoujalgi%2Follama4j&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false)
[![codecov](https://codecov.io/gh/amithkoujalgi/ollama4j/graph/badge.svg?token=U0TE7BGP8L)](https://codecov.io/gh/amithkoujalgi/ollama4j)
![Build Status](https://github.com/amithkoujalgi/ollama4j/actions/workflows/maven-publish.yml/badge.svg)
## Table of Contents

View File

@@ -8,7 +8,7 @@ This API lets you ask questions along with the image files to the LLMs.
These APIs correlate to
the [completion](https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion) APIs.
:::caution
:::note
Executing this on Ollama server running in CPU-mode will take longer to generate response. Hence, GPU-mode is
recommended.

View File

@@ -8,7 +8,7 @@ This API lets you ask questions along with the image files to the LLMs.
These APIs correlate to
the [completion](https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion) APIs.
:::caution
:::note
Executing this on Ollama server running in CPU-mode will take longer to generate response. Hence, GPU-mode is
recommended.

View File

@@ -8,6 +8,11 @@ This API lets you ask questions to the LLMs in a synchronous way.
These APIs correlate to
the [completion](https://github.com/jmorganca/ollama/blob/main/docs/api.md#generate-a-completion) APIs.
Use the `OptionBuilder` to build the `Options` object
with [extra parameters](https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values).
Refer
to [this](/docs/apis-extras/options-builder).
## Try asking a question about the model.
```java
@@ -19,11 +24,13 @@ public class Main {
OllamaAPI ollamaAPI = new OllamaAPI(host);
OllamaResult result = ollamaAPI.ask(OllamaModelType.LLAMA2, "Who are you?");
OllamaResult result =
ollamaAPI.ask(OllamaModelType.LLAMA2, "Who are you?", new OptionsBuilder().build());
System.out.println(result.getResponse());
}
}
```
You will get a response similar to:
@@ -47,11 +54,13 @@ public class Main {
String prompt = "List all cricket world cup teams of 2019.";
OllamaResult result = ollamaAPI.ask(OllamaModelType.LLAMA2, prompt);
OllamaResult result =
ollamaAPI.ask(OllamaModelType.LLAMA2, prompt, new OptionsBuilder().build());
System.out.println(result.getResponse());
}
}
```
You'd then get a response from the model:
@@ -84,12 +93,15 @@ public class Main {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
String prompt = SamplePrompts.getSampleDatabasePromptWithQuestion(
"List all customer names who have bought one or more products");
OllamaResult result = ollamaAPI.ask(OllamaModelType.SQLCODER, prompt);
String prompt =
SamplePrompts.getSampleDatabasePromptWithQuestion(
"List all customer names who have bought one or more products");
OllamaResult result =
ollamaAPI.ask(OllamaModelType.SQLCODER, prompt, new OptionsBuilder().build());
System.out.println(result.getResponse());
}
}
```
_Note: Here I've used

View File

@@ -1,5 +1,5 @@
---
sidebar_position: 5
sidebar_position: 6
---
# Generate Embeddings
@@ -30,17 +30,17 @@ public class Main {
You will get a response similar to:
```json
```javascript
[
0.5670403838157654,
0.009260174818336964,
0.23178744316101074,
-0.2916173040866852,
-0.8924556970596313,
0.8785552978515625,
-0.34576427936553955,
0.5742510557174683,
-0.04222835972905159,
-0.137906014919281
0.5670403838157654,
0.009260174818336964,
0.23178744316101074,
-0.2916173040866852,
-0.8924556970596313,
0.8785552978515625,
-0.34576427936553955,
0.5742510557174683,
-0.04222835972905159,
-0.137906014919281
]
```

View File

@@ -0,0 +1,73 @@
---
sidebar_position: 5
---
# Prompt Builder
This is designed for prompt engineering. It allows you to easily build the prompt text for zero-shot, one-shot, few-shot
inferences.
```java
import io.github.amithkoujalgi.ollama4j.core.OllamaAPI;
import io.github.amithkoujalgi.ollama4j.core.models.OllamaResult;
import io.github.amithkoujalgi.ollama4j.core.types.OllamaModelType;
import io.github.amithkoujalgi.ollama4j.core.utils.PromptBuilder;
public class AskPhi {
public static void main(String[] args) throws Exception {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
ollamaAPI.setRequestTimeoutSeconds(10);
String model = OllamaModelType.PHI;
PromptBuilder promptBuilder =
new PromptBuilder()
.addLine("You are an expert coder and understand different programming languages.")
.addLine("Given a question, answer ONLY with code.")
.addLine("Produce clean, formatted and indented code in markdown format.")
.addLine(
"DO NOT include ANY extra text apart from code. Follow this instruction very strictly!")
.addLine("If there's any additional information you want to add, use comments within code.")
.addLine("Answer only in the programming language that has been asked for.")
.addSeparator()
.addLine("Example: Sum 2 numbers in Python")
.addLine("Answer:")
.addLine("```python")
.addLine("def sum(num1: int, num2: int) -> int:")
.addLine(" return num1 + num2")
.addLine("```")
.addSeparator()
.add("How do I read a file in Go and print its contents to stdout?");
OllamaResult response = ollamaAPI.ask(model, promptBuilder.build());
System.out.println(response.getResponse());
}
}
```
You will get a response similar to:
```go
package main
import (
"fmt"
"io/ioutil"
)
func readFile(fileName string) {
file, err := ioutil.ReadFile(fileName)
if err != nil {
fmt.Fprintln(os.Stderr, "Error reading file:", err.Error())
return
}
f, _ := ioutil.ReadFile("file.txt")
if f != nil {
fmt.Println(f.String())
}
}
```

View File

@@ -0,0 +1,53 @@
---
sidebar_position: 1
---
# Options Builder
This lets you build options for the `ask()` API.
Check out the supported
options [here](https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values).
## Build an empty Options object
```java
import io.github.amithkoujalgi.ollama4j.core.utils.Options;
import io.github.amithkoujalgi.ollama4j.core.utils.OptionsBuilder;
public class Main {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
Options options = new OptionsBuilder().build();
}
}
```
## Build an empty Options object
```java
import io.github.amithkoujalgi.ollama4j.core.utils.Options;
import io.github.amithkoujalgi.ollama4j.core.utils.OptionsBuilder;
public class Main {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
Options options =
new OptionsBuilder()
.setMirostat(10)
.setMirostatEta(0.5f)
.setNumGpu(2)
.setTemperature(1.5f)
.build();
}
}
```

View File

@@ -6,6 +6,8 @@ sidebar_position: 4
This API lets you create a custom model on the Ollama server.
### Create a model from an existing Modelfile in the Ollama server
```java title="CreateModel.java"
public class CreateModel {
@@ -15,9 +17,144 @@ public class CreateModel {
OllamaAPI ollamaAPI = new OllamaAPI(host);
ollamaAPI.createModel("mycustommodel", "/path/to/modelfile/on/ollama-server");
ollamaAPI.createModelWithFilePath("mario", "/path/to/mario/modelfile/on/ollama-server");
}
}
```
Once created, you can see it when you use [list models](./list-models) API.
### Create a model by passing the contents of Modelfile
```java title="CreateModel.java"
public class CreateModel {
public static void main(String[] args) {
String host = "http://localhost:11434/";
OllamaAPI ollamaAPI = new OllamaAPI(host);
ollamaAPI.createModelWithModelFileContents("mario", "FROM llama2\nSYSTEM You are mario from Super Mario Bros.");
}
}
```
Once created, you can see it when you use [list models](./list-models) API.
### Example of a `Modelfile`
```
FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
PARAMETER num_ctx 4096
# sets a custom system message to specify the behavior of the chat assistant
SYSTEM You are Mario from super mario bros, acting as an assistant.
```
### Format of the `Modelfile`
```modelfile
# comment
INSTRUCTION arguments
```
| Instruction | Description |
|-------------------------------------|----------------------------------------------------------------|
| [`FROM`](#from-required) (required) | Defines the base model to use. |
| [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. |
| [`TEMPLATE`](#template) | The full prompt template to be sent to the model. |
| [`SYSTEM`](#system) | Specifies the system message that will be set in the template. |
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. |
#### PARAMETER
The `PARAMETER` instruction defines a parameter that can be set when the model is run.
| Parameter | Description | Value Type | Example Usage |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| num_gqa | The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b | int | num_gqa 1 |
| num_gpu | The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. | int | num_gpu 50 |
| num_thread | Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). | int | num_thread 8 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
| seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 |
| stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" |
| tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 |
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
#### TEMPLATE
`TEMPLATE` of the full prompt template to be passed into the model. It may include (optionally) a system message and a
user's prompt. This is used to create a full custom prompt, and syntax may be model specific. You can usually find the
template for a given model in the readme for that model.
#### Template Variables
| Variable | Description |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| `{{ .System }}` | The system message used to specify custom behavior, this must also be set in the Modelfile as an instruction. |
| `{{ .Prompt }}` | The incoming prompt, this is not specified in the model file and will be set based on input. |
| `{{ .First }}` | A boolean value used to render specific template information for the first generation of a session. |
```modelfile
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}
### User:
{{ .Prompt }}
### Response:
"""
SYSTEM """<system message>"""
```
### SYSTEM
The `SYSTEM` instruction specifies the system message to be used in the template, if applicable.
```modelfile
SYSTEM """<system message>"""
```
### ADAPTER
The `ADAPTER` instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be
an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be
tuned from the base model otherwise the behaviour is undefined.
```modelfile
ADAPTER ./ollama-lora.bin
```
### LICENSE
The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is
shared or distributed.
```modelfile
LICENSE """
<license text>
"""
```
## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to
distinguish it from arguments.
- Instructions can be in any order. In the examples, the `FROM` instruction is first to keep it easily readable.
Read more about Modelfile: https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md

View File

@@ -2,10 +2,38 @@
sidebar_position: 1
---
# Intro
# Introduction
Let's get started with **Ollama4j**.
## 🦙 What is Ollama?
[Ollama](https://ollama.ai/) is an advanced AI tool that allows users to easily set up and run large language models
locally (in CPU and GPU
modes). With Ollama, users can leverage powerful language models such as Llama 2 and even customize and create their own
models.
## 👨‍💻 Why Ollama4j?
Ollama4j was built for the simple purpose of integrating Ollama with Java applications.
```mermaid
flowchart LR
o4j[Ollama4j]
o[Ollama Server]
o4j -->|Communicates with| o;
m[Models]
p[Your Java Project]
subgraph Your Java Environment
direction TB
p -->|Uses| o4j
end
subgraph Ollama Setup
direction TB
o -->|Manages| m
end
```
## Getting Started
### What you'll need

View File

@@ -131,8 +131,13 @@ const config = {
prism: {
theme: prismThemes.github,
darkTheme: prismThemes.dracula,
additionalLanguages: ['java'],
},
}),
markdown: {
mermaid: true,
},
themes: ['@docusaurus/theme-mermaid']
};
export default config;

1136
docs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -16,6 +16,7 @@
"dependencies": {
"@docusaurus/core": "3.0.1",
"@docusaurus/preset-classic": "3.0.1",
"@docusaurus/theme-mermaid": "^3.0.1",
"@mdx-js/react": "^3.0.0",
"clsx": "^2.0.0",
"prism-react-renderer": "^2.3.0",

507
pom.xml
View File

@@ -4,20 +4,20 @@
<groupId>io.github.amithkoujalgi</groupId>
<artifactId>ollama4j</artifactId>
<version>1.0.33</version>
<version>1.0.41</version>
<name>Ollama4j</name>
<description>Java library for interacting with Ollama API.</description>
<url>https://github.com/amithkoujalgi/ollama4j</url>
<name>Ollama4j</name>
<description>Java library for interacting with Ollama API.</description>
<url>https://github.com/amithkoujalgi/ollama4j</url>
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven-surefire-plugin.version>3.0.0-M5</maven-surefire-plugin.version>
<maven-failsafe-plugin.version>3.0.0-M5</maven-failsafe-plugin.version>
<lombok.version>1.18.30</lombok.version>
</properties>
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven-surefire-plugin.version>3.0.0-M5</maven-surefire-plugin.version>
<maven-failsafe-plugin.version>3.0.0-M5</maven-failsafe-plugin.version>
<lombok.version>1.18.30</lombok.version>
</properties>
<developers>
<developer>
@@ -28,230 +28,273 @@
</developer>
</developers>
<licenses>
<license>
<name>MIT License</name>
<url>https://raw.githubusercontent.com/amithkoujalgi/ollama4j/main/LICENSE</url>
</license>
</licenses>
<licenses>
<license>
<name>MIT License</name>
<url>https://raw.githubusercontent.com/amithkoujalgi/ollama4j/main/LICENSE</url>
</license>
</licenses>
<scm>
<connection>scm:git:git@github.com:amithkoujalgi/ollama4j.git</connection>
<developerConnection>scm:git:https://github.com/amithkoujalgi/ollama4j.git</developerConnection>
<url>https://github.com/amithkoujalgi/ollama4j</url>
<tag>v1.0.33</tag>
</scm>
<scm>
<connection>scm:git:git@github.com:amithkoujalgi/ollama4j.git</connection>
<developerConnection>scm:git:https://github.com/amithkoujalgi/ollama4j.git</developerConnection>
<url>https://github.com/amithkoujalgi/ollama4j</url>
<tag>v1.0.41</tag>
</scm>
<build>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>3.3.0</version>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>3.5.0</version>
<executions>
<execution>
<id>attach-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- <plugin>-->
<!-- <groupId>org.apache.maven.plugins</groupId>-->
<!-- <artifactId>maven-gpg-plugin</artifactId>-->
<!-- <version>1.5</version>-->
<!-- <executions>-->
<!-- <execution>-->
<!-- <id>sign-artifacts</id>-->
<!-- <phase>verify</phase>-->
<!-- <goals>-->
<!-- <goal>sign</goal>-->
<!-- </goals>-->
<!-- <configuration>-->
<!-- &lt;!&ndash; This is necessary for gpg to not try to use the pinentry programs &ndash;&gt;-->
<!-- <gpgArguments>-->
<!-- <arg>&#45;&#45;pinentry-mode</arg>-->
<!-- <arg>loopback</arg>-->
<!-- </gpgArguments>-->
<!-- </configuration>-->
<!-- </execution>-->
<!-- </executions>-->
<!-- </plugin>-->
<!-- Surefire Plugin for Unit Tests -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${maven-surefire-plugin.version}</version>
<configuration>
<skipTests>${skipUnitTests}</skipTests>
<includes>
<include>**/unittests/*.java</include>
</includes>
</configuration>
</plugin>
<!-- Failsafe Plugin for Integration Tests -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${maven-failsafe-plugin.version}</version>
<configuration>
<includes>
<include>**/integrationtests/*.java</include>
</includes>
<excludes>
<exclude>**/unittests/*.java</exclude>
</excludes>
<skipTests>${skipIntegrationTests}</skipTests>
</configuration>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-release-plugin</artifactId>
<version>3.0.1</version>
<configuration>
<!-- <goals>install</goals>-->
<tagNameFormat>v@{project.version}</tagNameFormat>
</configuration>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>${lombok.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.15.3</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.4.12</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>2.0.9</version>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.10.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>4.1.0</version>
<scope>test</scope>
</dependency>
</dependencies>
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
<repository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/service/local/staging/deploy/maven2</url>
</repository>
</distributionManagement>
<profiles>
<profile>
<id>unit-tests</id>
<properties>
<test.env>unit</test.env>
<skipUnitTests>false</skipUnitTests>
<skipIntegrationTests>true</skipIntegrationTests>
</properties>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>3.3.0</version>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>3.5.0</version>
<executions>
<execution>
<id>attach-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- <plugin>-->
<!-- <groupId>org.apache.maven.plugins</groupId>-->
<!-- <artifactId>maven-gpg-plugin</artifactId>-->
<!-- <version>1.5</version>-->
<!-- <executions>-->
<!-- <execution>-->
<!-- <id>sign-artifacts</id>-->
<!-- <phase>verify</phase>-->
<!-- <goals>-->
<!-- <goal>sign</goal>-->
<!-- </goals>-->
<!-- <configuration>-->
<!-- &lt;!&ndash; This is necessary for gpg to not try to use the pinentry programs &ndash;&gt;-->
<!-- <gpgArguments>-->
<!-- <arg>&#45;&#45;pinentry-mode</arg>-->
<!-- <arg>loopback</arg>-->
<!-- </gpgArguments>-->
<!-- </configuration>-->
<!-- </execution>-->
<!-- </executions>-->
<!-- </plugin>-->
<!-- Surefire Plugin for Unit Tests -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${maven-surefire-plugin.version}</version>
<configuration>
<skipTests>${skipUnitTests}</skipTests>
<includes>
<include>**/unittests/*.java</include>
</includes>
</configuration>
</plugin>
<!-- Failsafe Plugin for Integration Tests -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${maven-failsafe-plugin.version}</version>
<configuration>
<includes>
<include>**/integrationtests/*.java</include>
</includes>
<excludes>
<exclude>**/unittests/*.java</exclude>
</excludes>
<skipTests>${skipIntegrationTests}</skipTests>
</configuration>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-release-plugin</artifactId>
<version>3.0.1</version>
<configuration>
<!-- <goals>install</goals>-->
<tagNameFormat>v@{project.version}</tagNameFormat>
</configuration>
</plugin>
<plugin>
<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.7</version>
<executions>
<execution>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>report</id>
<phase>test</phase>
<goals>
<goal>report</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</build>
</profile>
<profile>
<id>integration-tests</id>
<properties>
<test.env>integration</test.env>
<skipUnitTests>true</skipUnitTests>
<skipIntegrationTests>false</skipIntegrationTests>
</properties>
</profile>
<profile>
<id>ci-cd</id>
<properties>
<test.env>unit</test.env>
<skipUnitTests>true</skipUnitTests>
<skipIntegrationTests>true</skipIntegrationTests>
</properties>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>3.1.0</version>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
<configuration>
<!-- Prevent gpg from using pinentry programs. Fixes:
gpg: signing failed: Inappropriate ioctl for device -->
<gpgArguments>
<arg>--pinentry-mode</arg>
<arg>loopback</arg>
</gpgArguments>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.13</version>
<extensions>true</extensions>
<configuration>
<serverId>ossrh</serverId>
<nexusUrl>https://s01.oss.sonatype.org/</nexusUrl>
<autoReleaseAfterClose>true</autoReleaseAfterClose>
</configuration>
</plugin>
<dependencies>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>${lombok.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.15.3</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.3.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>2.0.9</version>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.10.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>4.1.0</version>
<scope>test</scope>
</dependency>
</dependencies>
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
<repository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/service/local/staging/deploy/maven2</url>
</repository>
</distributionManagement>
<profiles>
<profile>
<id>unit-tests</id>
<properties>
<test.env>unit</test.env>
<skipUnitTests>false</skipUnitTests>
<skipIntegrationTests>true</skipIntegrationTests>
</properties>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
</profile>
<profile>
<id>integration-tests</id>
<properties>
<test.env>integration</test.env>
<skipUnitTests>true</skipUnitTests>
<skipIntegrationTests>false</skipIntegrationTests>
</properties>
</profile>
<profile>
<id>ci-cd</id>
<properties>
<test.env>unit</test.env>
<skipUnitTests>true</skipUnitTests>
<skipIntegrationTests>true</skipIntegrationTests>
</properties>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>3.1.0</version>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
<configuration>
<!-- Prevent gpg from using pinentry programs. Fixes:
gpg: signing failed: Inappropriate ioctl for device -->
<gpgArguments>
<arg>--pinentry-mode</arg>
<arg>loopback</arg>
</gpgArguments>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.13</version>
<extensions>true</extensions>
<configuration>
<serverId>ossrh</serverId>
<nexusUrl>https://s01.oss.sonatype.org/</nexusUrl>
<autoReleaseAfterClose>true</autoReleaseAfterClose>
</configuration>
</plugin>
</plugins>
</build>
</profile>
</profiles>
<plugin>
<groupId>org.jacoco</groupId>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.7</version>
<executions>
<execution>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>report</id>
<phase>test</phase>
<goals>
<goal>report</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>
</project>

View File

@@ -6,6 +6,7 @@ import io.github.amithkoujalgi.ollama4j.core.models.request.CustomModelFileConte
import io.github.amithkoujalgi.ollama4j.core.models.request.CustomModelFilePathRequest;
import io.github.amithkoujalgi.ollama4j.core.models.request.ModelEmbeddingsRequest;
import io.github.amithkoujalgi.ollama4j.core.models.request.ModelRequest;
import io.github.amithkoujalgi.ollama4j.core.utils.Options;
import io.github.amithkoujalgi.ollama4j.core.utils.Utils;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
@@ -332,11 +333,15 @@ public class OllamaAPI {
*
* @param model the ollama model to ask the question to
* @param prompt the prompt/question text
* @param options the Options object - <a
* href="https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values">More
* details on the options</a>
* @return OllamaResult that includes response text and time taken for response
*/
public OllamaResult ask(String model, String prompt)
public OllamaResult ask(String model, String prompt, Options options)
throws OllamaBaseException, IOException, InterruptedException {
OllamaRequestModel ollamaRequestModel = new OllamaRequestModel(model, prompt);
ollamaRequestModel.setOptions(options.getOptionsMap());
return askSync(ollamaRequestModel);
}

View File

@@ -123,9 +123,9 @@ public class OllamaAsyncResultCallback extends Thread {
}
/**
* Returns the final response when the execution completes. Does not return intermediate results.
* Returns the final completion/response when the execution completes. Does not return intermediate results.
*
* @return String - response text
* @return String completion/response text
*/
public String getResponse() {
return result;

View File

@@ -1,10 +1,10 @@
package io.github.amithkoujalgi.ollama4j.core.models;
import static io.github.amithkoujalgi.ollama4j.core.utils.Utils.getObjectMapper;
import com.fasterxml.jackson.core.JsonProcessingException;
import java.util.List;
import java.util.Map;
import lombok.Data;
@Data
@@ -13,6 +13,7 @@ public class OllamaRequestModel {
private String model;
private String prompt;
private List<String> images;
private Map<String, Object> options;
public OllamaRequestModel(String model, String prompt) {
this.model = model;

View File

@@ -13,9 +13,9 @@ import lombok.Getter;
public class OllamaResult {
/**
* -- GETTER --
* Get the response text
* Get the completion/response text
*
* @return String - response text
* @return String completion/response text
*/
private final String response;

View File

@@ -21,6 +21,7 @@ public class OllamaModelType {
public static final String VICUNA = "vicuna";
public static final String WIZARD_VICUNA_UNCENSORED = "wizard-vicuna-uncensored";
public static final String PHIND_CODELLAMA = "phind-codellama";
public static final String PHI = "phi";
public static final String ZEPHYR = "zephyr";
public static final String WIZARDCODER = "wizardcoder";
public static final String MISTRAL_OPENORCA = "mistral-openorca";

View File

@@ -0,0 +1,11 @@
package io.github.amithkoujalgi.ollama4j.core.utils;
import java.util.Map;
import lombok.Data;
/** Class for options for Ollama model. */
@Data
public class Options {
private final Map<String, Object> optionsMap;
}

View File

@@ -0,0 +1,218 @@
package io.github.amithkoujalgi.ollama4j.core.utils;
import java.util.HashMap;
/** Builder class for creating options for Ollama model. */
public class OptionsBuilder {
private final Options options;
/** Constructs a new OptionsBuilder with an empty options map. */
public OptionsBuilder() {
this.options = new Options(new HashMap<>());
}
/**
* Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2
* = Mirostat 2.0)
*
* @param value The value for the "mirostat" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setMirostat(int value) {
options.getOptionsMap().put("mirostat", value);
return this;
}
/**
* Influences how quickly the algorithm responds to feedback from the generated text. A lower
* learning rate will result in slower adjustments, while a higher learning rate will make the
* algorithm more responsive. (Default: 0.1)
*
* @param value The value for the "mirostat_eta" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setMirostatEta(float value) {
options.getOptionsMap().put("mirostat_eta", value);
return this;
}
/**
* Controls the balance between coherence and diversity of the output. A lower value will result
* in more focused and coherent text. (Default: 5.0)
*
* @param value The value for the "mirostat_tau" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setMirostatTau(float value) {
options.getOptionsMap().put("mirostat_tau", value);
return this;
}
/**
* Sets the size of the context window used to generate the next token. (Default: 2048)
*
* @param value The value for the "num_ctx" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setNumCtx(int value) {
options.getOptionsMap().put("num_ctx", value);
return this;
}
/**
* The number of GQA groups in the transformer layer. Required for some models, for example, it is
* 8 for llama2:70b.
*
* @param value The value for the "num_gqa" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setNumGqa(int value) {
options.getOptionsMap().put("num_gqa", value);
return this;
}
/**
* The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support,
* 0 to disable.
*
* @param value The value for the "num_gpu" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setNumGpu(int value) {
options.getOptionsMap().put("num_gpu", value);
return this;
}
/**
* Sets the number of threads to use during computation. By default, Ollama will detect this for
* optimal performance. It is recommended to set this value to the number of physical CPU cores
* your system has (as opposed to the logical number of cores).
*
* @param value The value for the "num_thread" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setNumThread(int value) {
options.getOptionsMap().put("num_thread", value);
return this;
}
/**
* Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled,
* -1 = num_ctx)
*
* @param value The value for the "repeat_last_n" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setRepeatLastN(int value) {
options.getOptionsMap().put("repeat_last_n", value);
return this;
}
/**
* Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions
* more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
*
* @param value The value for the "repeat_penalty" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setRepeatPenalty(float value) {
options.getOptionsMap().put("repeat_penalty", value);
return this;
}
/**
* The temperature of the model. Increasing the temperature will make the model answer more
* creatively. (Default: 0.8)
*
* @param value The value for the "temperature" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setTemperature(float value) {
options.getOptionsMap().put("temperature", value);
return this;
}
/**
* Sets the random number seed to use for generation. Setting this to a specific number will make
* the model generate the same text for the same prompt. (Default: 0)
*
* @param value The value for the "seed" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setSeed(int value) {
options.getOptionsMap().put("seed", value);
return this;
}
/**
* Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating
* text and return. Multiple stop patterns may be set by specifying multiple separate `stop`
* parameters in a modelfile.
*
* @param value The value for the "stop" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setStop(String value) {
options.getOptionsMap().put("stop", value);
return this;
}
/**
* Tail free sampling is used to reduce the impact of less probable tokens from the output. A
* higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this
* setting. (default: 1)
*
* @param value The value for the "tfs_z" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setTfsZ(float value) {
options.getOptionsMap().put("tfs_z", value);
return this;
}
/**
* Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite
* generation, -2 = fill context)
*
* @param value The value for the "num_predict" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setNumPredict(int value) {
options.getOptionsMap().put("num_predict", value);
return this;
}
/**
* Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more
* diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
*
* @param value The value for the "top_k" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setTopK(int value) {
options.getOptionsMap().put("top_k", value);
return this;
}
/**
* Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a
* lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
*
* @param value The value for the "top_p" parameter.
* @return The updated OptionsBuilder.
*/
public OptionsBuilder setTopP(float value) {
options.getOptionsMap().put("top_p", value);
return this;
}
/**
* Builds the options map.
*
* @return The populated options map.
*/
public Options build() {
return options;
}
}

View File

@@ -0,0 +1,69 @@
package io.github.amithkoujalgi.ollama4j.core.utils;
/**
* The {@code PromptBuilder} class is used to construct prompt texts for language models (LLMs). It
* provides methods for adding text, adding lines, adding separators, and building the final prompt.
*
* <p>Example usage:
*
* <pre>{@code
* PromptBuilder promptBuilder = new PromptBuilder();
* promptBuilder.add("This is a sample prompt for language models.")
* .addLine("You can add lines to provide context.")
* .addSeparator()
* .add("Feel free to customize as needed.");
* String finalPrompt = promptBuilder.build();
* System.out.println(finalPrompt);
* }</pre>
*/
public class PromptBuilder {
private final StringBuilder prompt;
/** Constructs a new {@code PromptBuilder} with an empty prompt. */
public PromptBuilder() {
this.prompt = new StringBuilder();
}
/**
* Appends the specified text to the prompt.
*
* @param text the text to be added to the prompt
* @return a reference to this {@code PromptBuilder} instance for method chaining
*/
public PromptBuilder add(String text) {
prompt.append(text);
return this;
}
/**
* Appends the specified text followed by a newline character to the prompt.
*
* @param text the text to be added as a line to the prompt
* @return a reference to this {@code PromptBuilder} instance for method chaining
*/
public PromptBuilder addLine(String text) {
prompt.append(text).append("\n");
return this;
}
/**
* Appends a separator line to the prompt. The separator is a newline followed by a line of
* dashes.
*
* @return a reference to this {@code PromptBuilder} instance for method chaining
*/
public PromptBuilder addSeparator() {
prompt.append("\n--------------------------------------------------\n");
return this;
}
/**
* Builds and returns the final prompt as a string.
*
* @return the final prompt as a string
*/
public String build() {
return prompt.toString();
}
}

View File

@@ -8,6 +8,7 @@ import io.github.amithkoujalgi.ollama4j.core.models.ModelDetail;
import io.github.amithkoujalgi.ollama4j.core.models.OllamaAsyncResultCallback;
import io.github.amithkoujalgi.ollama4j.core.models.OllamaResult;
import io.github.amithkoujalgi.ollama4j.core.types.OllamaModelType;
import io.github.amithkoujalgi.ollama4j.core.utils.OptionsBuilder;
import java.io.IOException;
import java.net.URISyntaxException;
import java.util.ArrayList;
@@ -100,10 +101,12 @@ class TestMockedAPIs {
OllamaAPI ollamaAPI = Mockito.mock(OllamaAPI.class);
String model = OllamaModelType.LLAMA2;
String prompt = "some prompt text";
OptionsBuilder optionsBuilder = new OptionsBuilder();
try {
when(ollamaAPI.ask(model, prompt)).thenReturn(new OllamaResult("", 0, 200));
ollamaAPI.ask(model, prompt);
verify(ollamaAPI, times(1)).ask(model, prompt);
when(ollamaAPI.ask(model, prompt, optionsBuilder.build()))
.thenReturn(new OllamaResult("", 0, 200));
ollamaAPI.ask(model, prompt, optionsBuilder.build());
verify(ollamaAPI, times(1)).ask(model, prompt, optionsBuilder.build());
} catch (IOException | OllamaBaseException | InterruptedException e) {
throw new RuntimeException(e);
}